Bladder cancer (BC) is the most expensive cancer to manage on a per-patient basis, costing about $4 billion in total healthcare expenditure per annum in America alone. Therefore, identifying a natural compound for prevention of BC is of tremendous importance for managing this disease. Previous studies have identified isorhapontigenin (ISO) as having an 85% preventive effect against invasive BC formation induced by N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN). The results showed here that ISO treatment inhibited EGF-induced cell transformation of human urothelial cells through induction of tumor suppressor p27 transcription secondary to activation of an E2F1-dependentpathway.ISOtreatmentrenderedcellsresistanttoEGF-induced anchorage-independent growth concurrent with p27 protein induction in both UROtsa and SV-HUC-1 cells. ISO inhibition of EGF-induced cell transformation could be completely reversed by knockdown of p27, indicating that this protein was essential for the noted ISO inhibitory action. Mechanistic studies revealed that ISO treatment resulted in increased expression of E2F1, which in turn bound to its binding site in p27 promoter and initiated p27 transcription. The E2F1 induction was due to the elevation of its translation caused by ISO-induced miR-205 downregulation. Consistently, miR-205 was found to be overexpressed in human BCs, and ectopic expression of miR-205 mitigated ISO inhibitory effects against EGF-induced outcomes. Collectively, the results here demonstrate that ISO exhibits its preventive effect on EGF-induced human urothelial cell transformation by induction of p27 through a miR-205/E2F1 axis. This is distinct from what has been described for the therapeutic effects of ISO on human BC cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15384101.2022.2074623 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!