Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this work, the synthesis of limonene lactam starting from limonene epoxide and its subsequent ring-opening polymerization (ROP) to novel polyamides is presented. Sustainable, biobased materials are gaining interest as replacements of conventional, petroleum-based materials, and even more important, as high-performance materials for new applications. Terpenes-structurally advanced biobased compounds-are therefore of great interest. In this research, limonene lactam, a novel biobased monomer for preparing sustainable polyamides via ROP, can be synthesized. Limonene lactam possesses an isopropylene and a methyl side group, thus stereocenters posing special challenges and requirements for synthesis, analysis and polymerization. However, these difficult-to-synthesize structural elements can generate novel polymers with unique properties, e.g., functionalizability. In this work, a sustainable monomer synthesis is established, and simplified to industrial needs. For the sterically demanding in-bulk ROP to limonene polyamides, various initiators and conditions are tested. Polyamides with more than 100 monomer units are successfully synthesized and confirmed via nuclear magnetic resonance (NMR) spectroscopy and gel permeations chromatography (GPC). Differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) are used to analyze its thermal properties. In summary, a sustainable monomer synthesis is established, and promising polyamides with intact double bond and interesting thermal properties are achieved.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/marc.202200185 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!