Background: Deficiency of Zn is a major soil constraint in rice plant growth and yield. Edaphic factors such as Zn deficiency in soil in relation to plant performance are still poorly understood. Here, we report promising quantitative trait loci (QTL) conferring tolerance to Zn deficiency, which were identified through biparental mapping. The experiment was conducted using the 236 F recombinant inbred line mapping population derived from the cross of Kinandang Patong (Zn deficiency sensitive) and A69-1 (Zn deficiency tolerant).

Results: A total of six QTLs (qLB-2B, qLB-4B, qPM-4B, qPM-6B, qRZC-4B, qSZC-4B) on chromosomes 2, 4 and 6 were identified for environment 1, whereas five QTLs (qLB-2 N, qLB-4 N, qPM-4 N, qRZC-4 N, qSZC-4 N) on chromosomes 2 and 4 were detected for environment 2. Among these, five major (51.30, 48.70, 28.60, 56.00, 52.00 > 10 R ) and one minor (5.40 < 10 R ) QTLs for environment 1 and four major (51.48, 50.20, 53.00, 48.00 > 10 R ) and one minor (4.44 < 10) QTLs for environment 2 for Zn deficiency tolerance with a logarithm of odd threshold value higher than 3 were identified. The QTLs (qLB-4B, qPM-4B, qRZC-4B, qSZC-4B, qLB-4 N, qPM-4 N, qRZC-4 N, qSZC-4 N) for leaf bronzing, plant mortality root zinc concentration and shoot zinc concentration identified on chromosome 4 were found to be the most promising and highly reproducible across the locations that explained phenotypic variation from 48.00% to 56.00% with the same marker interval RM6748-RM303.

Conclusion: The new QTLs and its linked markers identified in the present study can be utilized for Zn deficiency tolerance in elite cultivars using marker-assisted backcrossing. © 2022 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jsfa.11981DOI Listing

Publication Analysis

Top Keywords

recombinant inbred
8
deficiency
6
identification qtls
4
qtls zinc
4
zinc deficiency
4
deficiency tolerance
4
tolerance recombinant
4
inbred population
4
population rice
4
rice oryza
4

Similar Publications

Accumulating evidence indicates that cellular senescence is closely associated with osteoarthritis. However, there is limited research on the mechanisms underlying fibroblast-like synoviocyte senescence and its impact on osteoarthritis progression. Here, we elucidate a positive correlation between fibroblast-like synoviocyte senescence and osteoarthritis progression and reveal that GATD3A deficiency induces fibroblast-like synoviocyte senescence.

View Article and Find Full Text PDF

AAV vectors show promise for gene therapy; however, kidney gene transfer remains challenging. Here we conduct a barcode-seq-based comparison of 47 AAV capsids administered through different routes in mice, followed by individual validation. We find that local delivery of AAV-KP1, but not AAV9, via the renal vein or pelvis effectively transduces proximal tubules with minimal off-target liver transduction, while systemic AAV9, but not AAV-KP1, enhances proximal tubule and podocyte transduction in chronic kidney disease.

View Article and Find Full Text PDF

Introduction: Dozens of vaccines have been approved or authorized internationally in response to the ongoing SARS-CoV-2 pandemic, covering a range of modalities and routes of delivery. For example, mucosal delivery of vaccines via the intranasal (i.n.

View Article and Find Full Text PDF

Drug addiction is a multifactorial syndrome in which genetic predispositions and exposure to environmental stressors constitute major risk factors for the early onset, escalation, and relapse of addictive behaviors. While it is well known that stress plays a key role in drug addiction, the genetic factors that make certain individuals particularly sensitive to stress and, thereby, more vulnerable to becoming addicted are unknown. In an effort to test a complex set of gene x environment interactions-specifically gene x chronic stress-here we leveraged a systems genetics resource: BXD recombinant inbred mice (BXD5, BXD8, BXD14, BXD22, BXD29, and BXD32) and their parental mouse lines, C57BL/6J and DBA/2J.

View Article and Find Full Text PDF

OsWRKY49 on qAT5 positively regulates alkalinity tolerance at the germination stage in Oryza sativa L. ssp. japonica.

Theor Appl Genet

December 2024

Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.

Integrated genome-wide association study and linkage mapping revealed genetic basis of alkalinity tolerance during rice germination. The key gene OsWRKY49 was further verified in transgenic plants. With the widespread use of the rice direct seeding cultivation model, improving the tolerance of rice varieties to salinity-alkalinity at the germination stage has become increasingly important.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!