[Cloning and function analysis of chalcone isomerase gene and chalcone synthase gene in Lonicera macranthoides].

Zhongguo Zhong Yao Za Zhi

School of Pharmacy, Hunan University of Chinese Medicine Changsha 410208, China Key Laboratory of Germplasm Resources and Standardized Planting of Hunan Large-scale Genuine Medicinal Materials Changsha 410208, China Key Laboratory of Traditional Chinese Medicine Modernization Research in General Colleges and Universities of Hunan Province Changsha 410208, China.

Published: May 2022

In order to explore the functions of genes of key rate-limiting enzymes chalcone isomerase(CHI) and chalcone synthase(CHS) in the biosynthesis of flavonoids in Lonicera macranthoides, this study screened and cloned the cDNA sequences of CHI and CHS genes from the transcriptome data of conventional variety and 'Xianglei' of L. macranthoides. Online bioinformatics analysis software was used to analyze the characteristics of the encoded proteins, and quantitative reverse-transcription polymerase chain reaction(qRT-PCR) to detect the expression of CHI and CHS in different parts of the varieties at different flowering stages. The content of luteo-loside was determined by high performance liquid chromatography(HPLC) and the correlation with the expression of the two genes was analyzed. The results showed that the CHI and CHS of the two varieties contained a 627 bp and 1170 bp open reading frame(ORF), respectively, and the CHI protein and CHS protein were stable, hydrophilic, and non-secretory. qRT-PCR results demonstrated that CHI and CHS of the two varieties were differentially expressed in stems and leaves at different flowering stages, particularly the key stages. Based on HPLC data, luteoloside content was in negative correlation with the relative expression of the genes. Thus, CHI and CHS might regulate the accumulation of flavonoids in L. macranthoides, and the specific functions should be further studied. This study cloned CHI and CHS in L. macranthoides and analyzed their expression for the first time, which laid a basis for investigating the molecular mechanism of the differences in flavonoids such as luteoloside in L. macranthoides and variety breeding.

Download full-text PDF

Source
http://dx.doi.org/10.19540/j.cnki.cjcmm.20220212.101DOI Listing

Publication Analysis

Top Keywords

chi chs
24
flowering stages
8
expression genes
8
chs varieties
8
chi
7
chs
7
macranthoides
5
[cloning function
4
function analysis
4
chalcone
4

Similar Publications

Accelerating antiviral drug discovery: early hazard detection with a dual zebrafish and cell culture screen of a 403 compound library.

Arch Toxicol

December 2024

Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR, 97333, USA.

The constant emergence of new viral pathogens underscores the need for continually evolving, effective antiviral drugs. A key challenge is identifying compounds that are both efficacious and safe, as many candidates fail during development due to unforeseen toxicity. To address this, the embryonic zebrafish morphology, mortality, and behavior (ZBE) screen and the SYSTEMETRIC® Cell Health Screen (CHS) were employed to evaluate the safety of 403 compounds from the Cayman Antiviral Screening Library.

View Article and Find Full Text PDF

Emerging evidence suggests that bi-directional communication and referral pathways, when employed strategically, can lead to favorable health outcomes by connecting patients with complex, multi-faceted health and social needs to appropriate services and resources. However, despite these benefits, patient acceptance of referrals via these pathways remains suboptimal. In this study, we describe individual and clinical factors associated with patient acceptance of these referrals.

View Article and Find Full Text PDF

Introduction: Cauliflower is widely cultivated all over the world is attributed to its palatable flavor, high levels of anti-cancer compounds, and diverse array of nutrients. Exposure to extremely cold stress during production can result in a more frequent occurrence of purple discoloration in cauliflower curds. In response to cold stress, plants naturally produce anthocyanins to eliminate reactive oxygen species (ROS) generated as a defense mechanism.

View Article and Find Full Text PDF

Integrated Transcriptomic and Metabolomic Analysis Revealed Regulatory Mechanisms on Flavonoids Biosynthesis in the Skin of Passion Fruit ( spp.).

J Agric Food Chem

December 2024

College of Horticulture, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

Passion fruit is one of the most famous fruit crops in tropical and subtropical regions due to its high edible, medicinal, and ornamental value. Flavonoids, a class of plant secondary metabolites, have important health-related roles. In this study, a total of 151 flavonoid metabolites were identified, of which 25 key metabolites may be the main contributors to the purple phenotype.

View Article and Find Full Text PDF

Tissue-specific transcriptome analyses unveils candidate genes for flavonoid biosynthesis, regulation and transport in the medicinal plant Ilex asprella.

Sci Rep

December 2024

School of Biological Engineering, Henan University of Technology, No. 100 Lianhua Street, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, People's Republic of China.

Article Synopsis
  • The study investigates the genes related to flavonoid synthesis, regulation, and transport in a plant species called Ilex asprella, identifying 28,478 differentially expressed genes (DEGs) across leaf, stem, and root tissues.
  • A detailed analysis reveals specific patterns of gene expression for flavonoid pathways, indicating that different pathways are dominant in different plant tissues: roots are more active in stilbenes and anthocyanins, while leaves focus on flavonols, and stems are associated with isoflavones.
  • The research highlights the presence of key regulatory genes and transporters in these pathways and notes the lack of certain genes necessary for producing specific flavonoids, providing insights valuable for medicinal
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!