Magnetic nanoparticles have garnered sustained research interest for their promise in biomedical applications including diagnostic imaging, triggered drug release, cancer hyperthermia, and neural stimulation. Many of these applications make use of heat dissipation by ferrite nanoparticles under alternating magnetic fields, with these fields acting as an externally administered stimulus that is either present or absent, toggling heat dissipation on and off. Here, we motivate and demonstrate an extension of this concept, magnetothermal multiplexing, in which exposure to alternating magnetic fields of differing amplitude and frequency can result in selective and independent heating of magnetic nanoparticle ensembles. The differing magnetic coercivity of these particles, empirically characterized by a custom high amplitude alternating current magnetometer, informs the systematic selection of a multiplexed material system. This work culminates in a demonstration of magnetothermal multiplexing for selective remote control of cellular signaling .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9075680 | PMC |
http://dx.doi.org/10.1002/adfm.202000577 | DOI Listing |
J Neural Eng
March 2022
Department of Psychiatry and Behavior Sciences, School of Medicine, Duke University, Durham, NC 27710, United States of America.
We present a combination of a power electronics system and magnetic nanoparticles that enable frequency-multiplexed magnetothermal-neurostimulation with rapid channel switching between three independent channels spanning a wide frequency range.The electronics system generates alternating magnetic field spanning 50 kHz to 5 MHz in the same coil by combining silicon (Si) and gallium-nitride (GaN) transistors to resolve the high spread of coil impedance and current required throughout the wide bandwidth. The system drives a liquid-cooled field coil via capacitor banks, forming three series resonance channels which are multiplexed using high-voltage contactors.
View Article and Find Full Text PDFAdv Funct Mater
September 2020
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
Magnetic nanoparticles have garnered sustained research interest for their promise in biomedical applications including diagnostic imaging, triggered drug release, cancer hyperthermia, and neural stimulation. Many of these applications make use of heat dissipation by ferrite nanoparticles under alternating magnetic fields, with these fields acting as an externally administered stimulus that is either present or absent, toggling heat dissipation on and off. Here, we motivate and demonstrate an extension of this concept, magnetothermal multiplexing, in which exposure to alternating magnetic fields of differing amplitude and frequency can result in selective and independent heating of magnetic nanoparticle ensembles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!