Spent mushroom Substrate is the by-product generated at the end of the mushroom growing cycle. It can be used in agriculture for different purposes, including seedling production, soil conditioning or application as an organic fertilizer. Tomato is one of the world́s most important crops, requiring considerable care, in terms of both nutrition and disease control. The objective of this study was to investigate the viability of spent mushroom substrate as a nutrient source for tomato seedlings and develop an integrated tomato and mushroom co-production system. For seedling production, different compositions were evaluated with spent mushroom substrate from or substrate colonized with . The parameters evaluated comprised germination rate, seedling quality and physicochemical analysis. A tomato and mushroom integrated production system was developed using a 40-liter pot divided into upper (spent mushroom substrate and soil), middle (spent mushroom substrate from ) and lower (gravel) layers. For seedlings production, plants treated with the substrate colonized with presented a superior root length (10.1 cm) and aerial part length (6.6 cm). Co-production of tomato and mushrooms was also shown to be viable. In this co-cultivation system between tomato and mushroom, the treatment with the substrate colonized with differed from others, with this treatment presenting high yields of tomato (2.35 kg/plant pot) and mushrooms (1.33 kg/plant pot) within the same bucket. With this co-production system, the tomato production time was reduced by 60 days and prolonged continuous mushroom production by 120 days. These findings show a sustainable approach to manage different agroindustrial residues, encouraging the use of these residues for olericulture and fungiculture production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9073006PMC
http://dx.doi.org/10.1016/j.sjbs.2021.12.058DOI Listing

Publication Analysis

Top Keywords

spent mushroom
20
mushroom substrate
20
tomato mushroom
12
substrate colonized
12
mushroom
10
production
8
integrated production
8
substrate
8
seedling production
8
tomato
8

Similar Publications

The black soldier fly (Hermetia illucens) is a saprophagous insect known for bioconverting organic waste, potentially offering environmental benefits, such as contributing to waste reduction and nutrient cycling. The performance of larvae varies significantly with factors substrate moisture, larval density, and scale of production. Three experiments were conducted using a mix of spent mushroom substrate (SMS) and chicken feed (CF).

View Article and Find Full Text PDF

Specific Fertilization Practices Reveal Important Insights into the Complex Interaction Between Microbes and Enzymes in Soils of Different Farming Systems.

Life (Basel)

November 2024

Department of Microbiology, Biochemistry, Molecular Biology and Biotechnology, Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia.

The interaction of microorganisms and their enzyme activity is one of the key indicators for a comprehensive measurement of soil health. The aim of this study was to determine significant correlations between different soil microorganisms and enzyme activities of β-glucosidase, N-acetyl-glucosaminidase, urease, arylamidase, phosphatase, acid phosphatase, alkaline phosphatase, and arylsulfatase after supplementation with standard fertilizer, spent mushroom substrate and composed fertilizer in soils from conventional-integrated, organic and biodynamic farming. Samples were grouped according to the farming system and fertilization for all seasons.

View Article and Find Full Text PDF

Spent mushroom substrate: A review on present and future of green applications.

J Environ Manage

January 2025

School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.

The cultivation of edible mushrooms plays a significant role in revitalizing numerous rural regions in China. However, this process generates a large amount of spent mushroom substrate (SMS). Traditional methods for handling SMS, such as random stacking and incineration, lead to resource waste and environmental pollution.

View Article and Find Full Text PDF

The study aimed to explore the potential use of coal-fired power plant bottom ashes in Pleurotus ostreatus cultivation using spent coffee grounds. The study analyzed five compositions of growth substrate for mushrooms: pure coffee grounds (I) as a control sample; coffee grounds substrate with the addition of 1% (II); 5% (III); 10% (IV) bottom ash; and bottom ash alone (V). The study revealed that compared to the control sample (I), the addition of 1% bottom ash (II) did not affect the time of mycelium growth but slowed fruiting body growth by 4 days.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how adding mineral iron influences the carbon sequestration capabilities of biochar produced from organic waste through pyrolysis at various temperatures (300-600 °C).
  • Iron-rich magnetic biochar offers advantages like high surface area, easy separation, and significant application potential in improving soil and remediating water.
  • Results show that iron enhances carbon retention by 12.2-44.5% and stability, particularly at higher pyrolysis temperatures, making a notable impact on the graphitization and thermal stability of biochar.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!