Zinc and its derivatives requirement increased to enhance human immunity against the different pandemics, including covid-19. Green synthesis is an emerging field of research. Zinc oxide (ZnO) nanoparticles have been prepared from and characterized using absorption, vibrational and electron microscope analysis. They were carried for antibacterial, inflammatory control tendency, and potential antioxidant activities. The brine shrimp lethal assay tested the biologically derived nanomaterial toxicity and the lethal concentration (LC) is 599.79 µg/ml. The inhibition against the important disease-causing pathogens was measured against four-gram negative, gram-positive bacteria and two fungus pathogens. The nanomaterial exposed inhibition zone for gram-positive bacteria between 17 mm and 25 mm. The inhibition zone against gram-negative bacteria exists between 19 mm and 24 mm. The anti-inflammatory activity was assessed by inhibition of protein denaturation and protease inhibitory activity using nanomaterial. The antioxidant activity was examined using four assays for the therapeutic activities. The average size range of 60-80 nm nanoparticles has prepared and exposed the good biological activity between 50 µg/ml and 100 µg/ml. The comparative results of anti-inflammatory and antioxidant assay results with standards such as Aspirin and vitamin C exposed that two to three times higher concentrations are required for the fifty percent of inhibitions. The prepared low-cost nanoparticle has exhibited excellent biological activity without any side effects and may enhance immunity
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9072904 | PMC |
http://dx.doi.org/10.1016/j.sjbs.2021.11.065 | DOI Listing |
Alzheimers Dement
December 2024
University of Kansas Alzheimer's Disease Research Center, Fairway, KS, USA.
Background: Aerobic exercise may positively affect brain health, although relationships with cognitive change are mixed. This likely is due to individual differences in the systemic physiological response to exercise. However, the acute effects of exercise on brain metabolism and biomarker responses are not well characterized in older adults or cognitively impaired individuals.
View Article and Find Full Text PDFBioconjug Chem
January 2025
School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel.
ENPP-1 is a transmembrane enzyme involved in nucleotide metabolism, and its overexpression is associated with various cancers, making it a potential therapeutic target and biomarker for early tumor diagnosis. Current detection methods for ENPP-1 utilize a colorimetric probe, , which has significant limitations in sensitivity. Here, we present probe , the first nucleic acid-based chemiluminescent probe designed for rapid and highly sensitive detection of ENPP-1 activity.
View Article and Find Full Text PDFCurr Pharm Des
January 2025
Department of Pharmacy, Delhi Pharmaceutical Sciences and Research University, New Delhi, India.
Background: The metal oxide nanoparticles possess unique properties such as biological compatibility, superior reactivity, and capacity to develop reactive oxygen species, due to this they have drawn significant interest in cancer treatment. The various MONPs such as cerium oxide, Copper oxide, Iron oxide, Titanium dioxide, and Zinc oxide have been investigated for several types of cancers including brain, breast, cervical, colon, leukemia, liver, lung, melanoma, ovarian, and prostate cancers. However, traditional physiochemical synthetic methods for MONPs commonly include toxic materials, a major concern that raises questions regarding their biocompatibility and safety.
View Article and Find Full Text PDFCurr Pharm Biotechnol
January 2025
Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China.
Introduction: Iron oxide nanozyme was synthesized from the fruit peel extract of pomegranate, which served as a reducing agent during the green synthesis. The scavenging of reactive oxygen species is often accompanied by immunomodulation following antiproliferative effects due to the crosstalk between the proteins involved in the inter-related signaling pathways.
Method: In the current study, the green synthesized nanozyme was studied for its ability to induce apoptosis in breast cancer cell lines.
Int J Clin Pediatr Dent
November 2024
Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India.
Aim And Background: Glass ionomer cement (GIC) serves as a widely used restorative dental material, known for its direct bonding to tooth structures and fluoride-releasing properties. This study aims to investigate the enhancement of GIC through the incorporation of a green-mediated nanocomposite comprising chitosan, titanium, zirconium, and hydroxyapatite, with a focus on evaluating the wear resistance of the modified GIC.
Materials And Methods: A one-pot synthesis technique was utilized to prepare a green-mediated nanocomposite incorporating chitosan, titanium, zirconium, and hydroxyapatite nanoparticles.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!