Genetic improvement of peanut ( L.) genotypes by developing short duration hybrids.

Saudi J Biol Sci

Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia.

Published: April 2022

Peanut, the only cash crop of rainfed areas of Pakistan, is facing immense challenges due to global warming. Climatic factors particularly the temperature fluctuations and rain pattern shift significantly impact the production and yield of peanut and unavailability of resilient varieties exacerbate this impact. To deal with the cropping pattern change and yield losses, due to climate vagaries, a study was conducted to develop early maturing hybrids using line into tester mating design. The F hybrids from the parental lines were produced in the year 2018 using Line × Tester mating design and then grown in the field in the year 2019 for further evaluation. The hybrids were evaluated based on the early maturity and yield-related attributes in comparison with the parental lines. Based on the general combining ability estimate, line V-3 (Golden), was found as best parent with highly significant values for plant height, days to peg formation, days to maturity, number of pegs per plant, number of pods per plants, number of seeds per plant, 100 pod weight 100 seed weight. Similarly, tester V-7 (PI 635006 01 SD) showed highly significant results of GCA for days to germination, day to 50% flowering, plant height, days to peg formation, days to maturity, number of pegs per plant, number of pods per plants, number of seeds per plant, 100 kernel weight, shelling percentage. All the combinations were evaluated for specific combining ability and significant results were observed for V-3 × V-4 (Golden × PI 619175 01 SD) and V-1 × V-6 (BARI-2000 × PI 564846 01 SD) by developing or maturity and yield-related attributes. The hybrid combinations V-3 × V-5 (Golden × PI 635006 01 SD) followed by V-3 × V-6 showed highly significant results for mid parent heterosis and better parent heterosis for days to 50% flowering, plant height, days to peg formation, number of pegs, days to maturity, number of mature seeds per plant, shelling ratio, 100 pod weight and 100 kernel weight. These parents and hybrid combinations with early maturity genes and high yield attributes can further be used for the development of short duration variety.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9073110PMC
http://dx.doi.org/10.1016/j.sjbs.2022.01.032DOI Listing

Publication Analysis

Top Keywords

plant height
12
height days
12
days peg
12
peg formation
12
days maturity
12
maturity number
12
number pegs
12
seeds plant
12
short duration
8
mating design
8

Similar Publications

Biochar Amendment Alleviates the Risk of High-Salinity Saltwater Intrusion for the Growth and Yield of Rice L.).

Recent Adv Food Nutr Agric

January 2025

Environmental Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand.

Introduction: Saltwater intrusion poses a serious risk to global food security. As a soil amendment, biochar mitigates the negative effects of saltwater intrusion in rice, yet the beneficial effects on agricultural productivity with different exposure times and salt concentrations have not been fully examined.

Methods: A pot experiment was conducted to investigate the effects of 30% (w/w) rice husk biochar on the growth, ion accumulation, and yield of the Phitsanulok 2 rice cultivar under salt stress due to saltwater intrusion.

View Article and Find Full Text PDF

The effect of planting density on producing quality seed tubers using shoot tip cuttings and conventional methods from tubers has not been studied in Ethiopia. An experiment was conducted to determine the effects of spacing on seed tuber yield and related traits of potato cultivars at Adet Agricultural Research Center in northwestern Ethiopia during the 2023 cropping season. The treatments consisted of two potato varieties (Belete and Gera) propagated by shoot tip cuttings at four inter-row spacings (30, 40, 50, and 60 cm) and intra-row spacing (15, 20, 25, and 30 cm).

View Article and Find Full Text PDF

Pot marigold is an ornamental plant of great importance in pharmacy and cosmetology. However, there is limited published information on the diversity of the species at both the morphological and genetic levels. This paper aimed to determine the morphological and genetic diversity of selected marigold varieties.

View Article and Find Full Text PDF

AutoGP: An Intelligent Breeding Platform for Enhancing Maize Genomic Selection.

Plant Commun

January 2025

National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Hubei, China. Electronic address:

In the face of climate change and the growing global population, there is an urgent need to accelerate the development of high-yielding crop varieties. To this end, vast amounts of genotype-to-phenotype data have been collected, and many machine learning (ML) models have been developed to predict phenotype from a given genotype. However, the requirement for high densities of single-nucleotide polymorphisms (SNPs) and the labor-intensive collection of phenotypic data are hampering the use of these models to advance breeding.

View Article and Find Full Text PDF

Balancing the solar irradiance needs: optimising growth in sphagnum palustre through tailored UV-B effects.

BMC Plant Biol

January 2025

Hubei Key Laboratory of Biological Resource Protection and Utilization, Enshi, 445000, China.

Background: The carbon sequestration potential and water retention capacity of peatlands are closely linked to the growth dynamics of Sphagnum mosses. However, few studies have focused on the response of Sphagnum moss growth dynamics to UV-B radiation, and existing research has emphasized species differences. In this study, Sphagnum palustre L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!