Cerium oxide nanoparticles were prepared by calcination of basic cerous carbonate (as a precursor) obtained by precipitation from an aqueous solution. Prepared samples were characterized by X-ray diffraction (XRD), infrared spectroscopy (FTIR), high resolution scanning electron microscopy (HRSEM), BET (Brunauer-Emmett-Teller) surface area and porosity measurement. Prepared cerium oxide was applied as a destructive sorbent for the fast and safe degradation of organophosphorus flame retardant triphenyl phosphate (TPP). It was shown that cerium dioxide was effective in the decomposition of TPP by cleavage of the P-O-aryl bond in the flame retardant molecule. A degradation mechanism for TPP on the ceria surface was proposed. The degradation is governed by conversion of TPP diphenyl phosphate (DPP) to the final product identified as phenol (Ph). The key parameter increasing the degradation efficiency of CeO is the temperature of calcination. At optimum calcination temperature (500 °C), the produced ceria retains a sufficiently high surface area and attains an optimum degree of crystallinity (related to a number of crystal defects, and thus potential reactive sites). The fast and efficient degradation of organophosphorus flame retardant TPP was observed in a polar aprotic solvent (acetonitrile) that is miscible with water.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9072973 | PMC |
http://dx.doi.org/10.1039/c9ra06575j | DOI Listing |
Sci Total Environ
January 2025
Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:
Hundreds of new flame retardants (NFRs) are widely used, causing environmental pollution and threating human health. In this study, based on the interaction of NFRs and human serum albumin (HSA), we assessed the differences in potential human accumulation of 8 NFRs including 1,2-Dibromo-4-(1,2-dibromoethyl)cyclohexane (TBECH), tetrabromobisphenol A bis(dibromopropyl ether) (TBBPA-DBPE), 2,4,6-tribromophenol (TBP), pentabromophenol (PBP), tri-n-butyl phosphate (TnBP), triphenyl phosphate (TPP), Tri(2-chloroethyl) phosphate (TCEP), and Tri(1,3-dichloro-2-propyl) phosphate (TDCP). All NFRs could bind to HSA and cause slight damage to its structure, suggesting their potential human accumulation ability.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing, 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environmental of China, Nanjing, 210042, China. Electronic address:
Decabromodiphenyl ethane (DBDPE) is one of the most extensively used novel brominated flame retardants, and it has been frequently detected in the global environment. Although organisms encounter various pollutants through the intestine, the toxicity effects of DBDPE exposure on the intestine and the potential mechanisms remain unclear. Here, by morphological observation, histopathology, high-throughput sequencing, and transcriptomics methods, we evaluated the effects of environmental (0.
View Article and Find Full Text PDFSci Total Environ
January 2025
College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China. Electronic address:
2-Ethylhexyl diphenyl phosphate (EHDPHP) is a widely used organophosphorus flame retardant and plasticizer easily released into the environment. Its biological toxicity is of great concern. The lung is considered a possible target organ for EHDPHP, but currently, there are limited studies on the biotoxicity of EHDPHP in poultry lungs.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
State Key Laboratory of Biobased Fiber Manufacturing Technology, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China. Electronic address:
Exploring innovative and sustainable routes for the production of biodegradable biomass-based materials is critical to promote a circular carbon economy and carbon neutrality goals. Fossil-based non-biodegradable plastic waste poses a nonnegligible threat to humans and the ecological environment, and biomass-based functional materials are becoming increasingly viable alternatives. Lignin, a naturally occurring macromolecular polymer, is green and renewable resource rich in aromatic rings, with biodegradability, biocompatibility, and excellent processability for eco-friendly composites.
View Article and Find Full Text PDFBMC Genomics
January 2025
Laboratory for Marine Ecology and Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China.
Background: Tris (2-chloroethyl) phosphate (TCEP), a widely used flame retardant, is widespread in the environment and potentially harmful to organisms. However, the specific mechanisms of TCEP-induced neurological and reproductive toxicity in fish are largely unknown. Turbot (Scophthalmus maximus) is cultivated on a large scale, and the emergence of pollutants with endocrine disrupting effects seriously affects its economic benefits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!