Mechanistic insights into the interaction of five previously chemically synthesized triazole-linked chalcone analogs (CTs) with human serum albumin (HSA) were sought using various spectroscopic techniques (UV-visible absorption, fluorescence, and circular dichroism) and molecular docking. The fluorescence quenching experiments performed at three different temperatures (288, 298 and 308 K) revealed the static mode of quenching and the binding constants ( ∼ 10) obtained indicated the strong affinity of these analogs for HSA. Furthermore, significant changes in the secondary structure of HSA in the presence of these analogs were also confirmed by far UV-CD spectroscopy. The thermodynamic properties such as the enthalpy change (Δ°), Gibbs free energy change (Δ°) and entropy change (Δ°) revealed that the binding process was spontaneous and exothermic. Theoretical studies, , DFT and molecular docking corroborated the experimental results as these five analogs could bind with HSA through hydrogen bonding and hydrophobic interactions. The present study provides useful information regarding the interaction mechanism of these analogs with HSA, which can provide a new avenue to design more potent chalcone triazole analogs for use in the biomedical field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9072648PMC
http://dx.doi.org/10.1039/c9ra04192cDOI Listing

Publication Analysis

Top Keywords

molecular docking
12
change Δ°
12
insights interaction
8
chalcone triazole
8
triazole analogs
8
human serum
8
serum albumin
8
analogs hsa
8
analogs
7
hsa
5

Similar Publications

Flavin adenine nucleotide (FAD)-dependent oxidoreductase enzyme Alcohol oxidase (AOX) facilitates the growth of methylotrophic yeast C. boidinii by catabolizing methanol, producing formaldehyde and hydrogen peroxide. Vacuolar Protease-A (PrA) from C.

View Article and Find Full Text PDF

The ruthenium compounds have been known to have the wide range of potential applications as anticancer, antibacterial and anti-diabetic etc. The ligand substitutions play a vital role in enhancing the pharmacological and biological activities. In the present study, three ruthenium-metal based complexes, designated as (I-III), were synthesized and characterized employing element analysis, FTIR and HNMR.

View Article and Find Full Text PDF

A new aguanidine-based bis Schiff base for highly selective Al recognition, BSA binding studies and theoretical calculations.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

School of Agriculture and Bioengineering, Heze University, Heze 274500, China. Electronic address:

Herin, the successful synthesis of a bis Schiff base (L) has been achieved using 2-hydroxy-1-naphthaldehyde and 1,3-diaminoguanidine as raw materials, which was further characterized by infrared spectroscopy, mass spectrometry, and nuclear magnetic resonance hydrogen spectrum. Moreover, spectroscopic experiments demonstrated that the probe L showed good selectivity and visual detectability for Al. Its detection limit (DL) is 2.

View Article and Find Full Text PDF

Computational insights into maternal environmental pollutants and folate pathway regulation.

Reprod Toxicol

December 2024

Department of Genomic Research, Sri Sathya Sai Sanjeevani Research Foundation, Palwal, Haryana, India, 121102. Electronic address:

Exposure to environmental pollutants during pregnancy can adversely affect fetal growth and postnatal development. While numerous studies have explored the interaction between environmental toxic chemicals and the folate pathway, few have examined their inhibitory effects on key targets. This computational study identified 27 maternal environmental toxicants using the Comparative Toxicogenomics Database (CTD) and analyzed them to identify their targets.

View Article and Find Full Text PDF

Identification and mechanistic study of piceatannol as a natural xanthine oxidase inhibitor.

Int J Biol Macromol

December 2024

Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China. Electronic address:

Natural Xanthine oxidase (XOD) inhibitors represent promising therapeutic agents for hyperuricemia (HUA) treatment due to their potent efficacy and favorable safety profiles. This study involved the construction of a comprehensive database of 315 XOD inhibitors and development of 28 machine learning-based QSAR models. The ChemoPy light gradient boosting machine model exhibited the best performance (AUC = 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!