The chalcones derived from -alkynylacetophenones and aromatic aldehydes (yne-enones) when heated under reflux with iodine in acetic acid gave a range of benzo[]fluorenone derivatives in moderate to good yields. The transformation involves the formation of a vinyl indenone intermediate through regioselective alkyne hydration and intramolecular aldol condensation followed by electrocyclic ring closure and aromatization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9069471PMC
http://dx.doi.org/10.1039/c9ra02376cDOI Listing

Publication Analysis

Top Keywords

iodine-mediated synthesis
4
synthesis benzo[]fluorenones
4
benzo[]fluorenones yne-enones
4
yne-enones chalcones
4
chalcones derived
4
derived -alkynylacetophenones
4
-alkynylacetophenones aromatic
4
aromatic aldehydes
4
aldehydes yne-enones
4
yne-enones heated
4

Similar Publications

We have developed transition-metal-free synthetic methodologies for dibenzoxazepinones utilizing salicylamides as starting materials and employing two distinct types of successive hypervalent iodine-mediated arylocyclizations. This synthetic protocol encompasses selective phenol -arylation of salicylamides with diaryliodonium salts, followed by electrophilic aromatic amination utilizing chemically or electronically generated hypervalent iodine reagents in the second stage of the process.

View Article and Find Full Text PDF

Hypervalent Iodine-Mediated Synthesis of Steroidal 5/5-Spiroiminals.

Molecules

December 2024

The Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA.

The hypervalent iodine-mediated formation of steroidal 5/5-spiroiminals and 5/5-spiroaminals from steroidal amines is presented. Under the influence of excess PhI(OAc) and iodine in acetonitrile at 0 °C, steroidal amines smoothly underwent cyclization to give a mixture of 5/5-spiroiminals and 5/5-spiroaminals. This reaction represents the first example of a C-H-activation-mediated formation of a spiroiminal.

View Article and Find Full Text PDF
Article Synopsis
  • The chemistry of hypervalent iodine (HVI) reagents is gaining popularity for synthesizing various chemical structures due to their unique reactivity as oxidants and electrophiles.
  • HVI reagents are affordable, non-toxic, and environmentally friendly, making them appealing for chemical synthesis.
  • A key application is the intramolecular HVI-mediated halocyclisation of alkenes, utilizing different nucleophiles (like carbon, oxygen, nitrogen, or sulfur) to create halogenated cyclic compounds, with literature examples categorized by the halogens and nucleophiles used.
View Article and Find Full Text PDF
Article Synopsis
  • Protein-protein interactions (PPIs) are crucial for many biological functions and diseases, making them important but challenging targets for drug development.
  • Traditional drug discovery has focused on enzymes and receptors, which have smaller binding sites, leaving a gap in strategies to successfully target PPIs.
  • To overcome these challenges, a new strategy called privileged substructure-based diversity-oriented synthesis (pDOS) was developed, incorporating pyrimidine-based compounds to create diverse chemical structures that can effectively interfere with PPIs, including inhibiting the interaction between human ACE2 and the SARS-CoV-2 spike protein.
View Article and Find Full Text PDF

Asymmetric cyclopropanation an electro-organocatalytic cascade.

Chem Commun (Camb)

November 2024

Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia.

We report an iminium ion-promoted, asymmetric synthesis of cyclopropanes an electrocatalytic, iodine-mediated ring closure. The mild, controlled electrochemical generation of electrophilic iodine species in catalytic quantities prevents organocatalyst deactivation, while also eliminating the need for halogenating reagents, thus simplifying traditional synthetic approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!