Contemporary studies of self-healing polymer composites are based on microcapsules synthesized using synthetic and toxic polymers, biopolymers, methods such as polymerization, electrospraying, and air atomization. Herein, we synthesized a healing agent, epoxy (EPX) encapsulated calcium carbonate (CC) microcapsules, which was used to prepare self-healing EPX composites as a protective coating for metals. The CC microcapsules were synthesized using two facile methods, namely, the soft-template method (STM) and the emulsion method (EM). Microcapsules prepared using the STM (ST-CC) were synthesized using sodium dodecyl sulphate (SDS) surfactant micelles as the soft-template, while the microcapsules prepared using the EM (EM-CC) were synthesized in an oil-in-water (O/W) emulsion. These prepared CC microcapsules were characterized using light microscopy (LMC), field emission scanning electron microscopy (FE-SEM), fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), and thermogravimetric analysis (TGA). The synthesized ST-CC microcapsules were spherical in shape, with an average diameter of 2.5 μm and an average shell wall thickness of 650 nm, while EM-CC microcapsules had a near-spherical shape with an average diameter of 3.4 μm and an average shell wall thickness of 880 nm. The ST-CC capsules exhibited flake-like rough surfaces while EM-CC capsules showed smooth bulgy surfaces. The loading capacity of ST-CC and EM-CC microcapsules were estimated using TGA and found to be 11% and 36%, respectively. The FTIR and NMR spectra confirmed the EPX encapsulation and the unreactive nature of the loaded EPX with the inner walls of CC microcapsules. The synthesized CC microcapsules were further incorporated into an EPX matrix to prepare composite coatings with 10 (w/w%), 20 (w/w%), and 50 (w/w%) capsule loadings. The prepared EPX composite coatings were scratched and observed using FE-SEM and LMC to evaluate the release of encapsulated EPX inside the CC capsules, which is analogous to the healing behaviour. Moreover, EPX composite coatings with 20 (w/w%) and 50 (w/w%) of ST-CC showed better healing performances. Thus, it was observed that ST-CC microcapsules outperformed EM-CC. Additionally, the EPX/CC coatings showed remarkable self-healing properties by closing the gaps of the scratch surfaces. Thus, these formaldehyde-free, biocompatible, biodegradable, and non-toxic CC based EPX composite coatings hold great potential to be used as a protective coating for metal substrates. Primary results detected significant corrosion retardancy due to the self-healing coatings under an accelerated corrosion process, which was performed with a salt spray test.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9069483PMC
http://dx.doi.org/10.1039/c9ra03804cDOI Listing

Publication Analysis

Top Keywords

composite coatings
16
microcapsules
13
microcapsules synthesized
12
w/w% w/w%
12
epx composite
12
epx
9
calcium carbonate
8
carbonate microcapsules
8
protective coating
8
microcapsules prepared
8

Similar Publications

Background: This study aimed to evaluate the efficacy of polydopamine (PDA) functionalization on orthodontic brackets in inhibiting biofilm formation and promoting surface bioactivity to buffer the acidity of caries-causing bacteria around orthodontic brackets and prevent demineralization. The stability of the coating in artificial saliva (AS) and distilled water was evaluated, along with its effect on pH changes in simulated body fluid (SBF) and distilled water.

Methods: Maxillary incisor orthodontic brackets underwent PDA functionalization using a dopamine hydrochloride solution following a specific protocol.

View Article and Find Full Text PDF

Cellulose nanofibers reinforced carboxylated nitrile butadiene rubber coatings for improved corrosion protection of mild steel.

Int J Biol Macromol

January 2025

School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang, Jiangsu 212013, China. Electronic address:

The development of an efficient coating with comprehensive antimicrobial and anticorrosion properties for metals is crucial. The present study used a one-pot strategy to fabricate a high-performance nanocomposite coating of carboxylated nitrile butadiene rubber/cellulose nanofibers/zinc oxide (XNBR/CNF-ZnO), demonstrating excellent potential for application in the protection against metal corrosion. Eco-friendly CNF-ZnO nanomaterials, prepared using the in-situ generation method, were used as reinforcing fillers, while XNBR was used as the matrix material.

View Article and Find Full Text PDF

Background: Tavaborole (TAV), a benzoxaborole derivative, is an FDA-approved antifungal agent for treating onychomycosis, a common and persistent fungal infection of the toenails.

Objective: This study aimed to develop a robust stability-indicating HPTLC method to determine TAV in nanostructured lipid carriers (NLC) using a comprehensive approach that includes risk assessment, and Analytical Quality by Design.

Methods: The critical method parameters influencing the HPTLC results were screened using a Placket-Burman screening design followed by its optimization using a central composite optimization design.

View Article and Find Full Text PDF

Background: For patients with osteoporosis and rotator cuff tears, there is still no consensus on current treatment methods. The material, structure, and number of anchors have important effects on the repair outcome.

Purpose: To investigate the use of chitosan quaternary ammonium salt-coated nickel-titanium memory alloy (NTMA) anchors to treat rotator cuff injury in shoulders with osteoporosis in a rabbit osteoporosis model.

View Article and Find Full Text PDF

Multifunctional coatings have great application value in the protection of Marine equipment, ships and ship facilities, but they still suffer from the disadvantages of high preparation cost and complicated synthesis methods. Herein, employing a simple method to synthesize black carbon nitride (BCN), as the filler in polydimethylsiloxane (PDMS) to construct BCN/PDMS composite coating with a multifunctional anti-corrosion/antifouling coating capable of photothermal self-healing property. Experimental results exhibit that the BCN/PDMS coating can still possesses excellent corrosion resistance after 28 d of immersion in the simulated seawater, and the impedance modulus still manages to reach 6.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!