In this paper, we report a low temperature technique and new strategy for the dual growth of carbon nanotubes (CNTs) and nanorods (CNRs) with alumina nanoparticles to avoid the high temperature required for CNT and CNR production and their assembling behaviour. In this trend, X-ray diffraction and thermal analysis indicated that the porous system of aluminium species was prepared and saturated with the crystalline structure of ammonium nitrate to act as a solid explosive composite and caused alcohol decomposition inside a pressurized vessel at 250 °C. TEM images and the Raman results confirmed that the CNTs had grown at 250 °C through the decomposition of methanol inside the boehmite structure. Also, the TEM images revealed that the growth of CNTs depended on the ratio between the methanol and the solid explosive. By calcination at 600 °C, the Raman results indicated that the CNTs became more ordered and had fewer defects. In the case of changing methanol to ethanol, the results indicated that methanol was more favorable than ethanol for growing CNTs by this technique. Also, it indicated that ethanol was a good source for producing carbon nanorods. Finally, we concluded that this was probably the first time that carbon nanotubes or nanorods had been prepared at 250 °C and their aggregations prevented through their dual growth with alumina nanoparticles. This dual growth approach is a very promising strategy for building homogeneous nanocomposites based on carbon nanotubes and nanorods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9072139 | PMC |
http://dx.doi.org/10.1039/c9ra04532e | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Key Laboratory of Cryogenics Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
Sublethal tumor cells have an urgent need for energy, making it common for them to switch metabolic phenotypes between glycolysis and oxidative phosphorylation (OXPHOS) for compensatory energy supply; thus, the synchronous interference of dual metabolic pathways for limiting energy level is essential in inhibiting sublethal tumor growth. Herein, a multifunctional nanoplatform of Co-MOF-loaded anethole trithione (ADT) and myristyl alcohol (MA), modified with GOx and hyaluronic acid (HA) was developed, namely, CAMGH. It could synchronously interfere with dual metabolic pathways including glycolysis and OXPHOS to restrict the adenosine triphosphate (ATP) supply, achieving the inhibition to sublethal tumors after microwave (MW) thermal therapy.
View Article and Find Full Text PDFClin Exp Med
January 2025
Department of Hematology-Oncology, Imam Hossein Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
IL-27 is structurally an immune-enhancing and pleiotropic two-chain cytokine associated with IL-12 and IL-6 families. IL-27 contains two subunits, namely IL-27p28 and EBI3. A heterodimer receptor of IL-27, composed of IL27Rα (WSX1) and IL6ST (gp130) chains, mediates the IL-27 function following the activation of STAT1 and STAT3 signaling pathways.
View Article and Find Full Text PDFJACC Heart Fail
January 2025
Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic. Electronic address:
Background: Growth differentiation factor (GDF)-15 is a pleiotropic cytokine that is associated with appetite-suppressing effects and weight loss in patients with malignancy.
Objectives: This study aims to investigate the relationships between GDF-15 levels, anorexia, cachexia, and clinical outcomes in patients with advanced heart failure with reduced ejection fraction (HFrEF).
Methods: In this observational, retrospective analysis, a total of 344 patients with advanced HFrEF (age 58 ± 10 years, 85% male, 67% NYHA functional class III), underwent clinical and echocardiographic examination, body composition evaluation by skinfolds and dual-energy x-ray absorptiometry, circulating metabolite assessment, Minnesota Living with Heart Failure Questionnaire, and right heart catheterization.
Nutrients
January 2025
Interdisciplinary Laboratory in Neurosciences, Physiology, and Psychology: Physical Activity, Health, and Learning (LINP2), UFR STAPS, Paris Nanterre University, 92000 Nanterre, France.
Aims: To evaluate the effectiveness of a dual approach involving time-restricted eating (TRE) at different times of the day combined with physical activity (PA) on functional capacity and metabolic health in overweight or obese women.
Methods: Random allocation of sixty-one participants into four groups: early time-restricted eating plus physical activity (ETRE-PA, n = 15, 31.8 ± 10.
Nutrients
December 2024
Department of Nutrition, Texas A&M University, College Station, TX 77843, USA.
Background/objectives: This study builds on previous findings from mouse models, which showed that maternal overnutrition induced by a high-fat diet (HFD) promotes metabolic-associated fatty liver disease (MAFLD) in offspring, linked to global DNA hypermethylation. We explored whether epigenetic modulation with 5-Aza-CdR, a DNA methylation inhibitor, could prevent MAFLD in offspring exposed to maternal overnutrition.
Methods: The offspring mice from dams of maternal overnutrition were fed either a chow diet or a high-fat diet (HFD) for 10 weeks.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!