Similar Publications

A scalable solar-driven photocatalytic system for separated H and O production from water.

Nat Commun

January 2025

State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, China.

Solar-driven photocatalytic water splitting offers a sustainable pathway to produce green hydrogen, yet its practical application encounters several challenges including inefficient photocatalysts, sluggish water oxidation, severe reverse reactions and the necessity of separating produced hydrogen and oxygen gases. Herein, we design and develop a photocatalytic system composed of two separate reaction parts: a hydrogen evolution cell containing halide perovskite photocatalysts (MoSe-loaded CH(NH)PbBrI) and an oxygen evolution cell containing NiFe-layered double hydroxide modified BiVO photocatalysts. These components are bridged by a I/I redox couple to facilitate electron transfer, realizing efficient overall water splitting with a solar-to-hydrogen conversion efficiency of 2.

View Article and Find Full Text PDF

Functionalized UiO-66 induces shallow electron traps in heterojunctions with InN for enhanced photocathodic water splitting.

J Colloid Interface Sci

January 2025

State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640 China; School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 China. Electronic address:

Indium nitride (InN) exhibited significant potential as a photoelectrode material for photoelectrochemical (PEC) water splitting, attributed to its superior light absorption, high electron mobility, and direct bandgap. However, its practical application was constrained by rapid carrier recombination occurring within the bulk and at the surface. To address these limitations, researchers developed InN/UiO-66 heterojunction photoelectrodes, which markedly enhanced PEC water splitting for hydrogen production.

View Article and Find Full Text PDF

Conversion of solar energy into value-added chemicals through photoelectrochemistry (PEC) holds great potential for advancing sustainable development but limits by high onset potential which affects energy conversion efficiencies. Herein, we utilized a CuPd cocatalyst-modified Sb2(S,Se)3 photocathode (CuPd/TSSS) to achieve an ultra-low onset potential of 0.83 VRHE for photoelectrochemical ammonia synthesis.

View Article and Find Full Text PDF

Optimizing photocatalysis electron spin control.

Chem Soc Rev

January 2025

Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.

Solar-driven photocatalytic technology holds significant potential for addressing energy crisis and mitigating global warming, yet is limited by light absorption, charge separation, and surface reaction kinetics. The past several years has witnessed remarkable progress in optimizing photocatalysis electron spin control. This approach enhances light absorption through energy band tuning, promotes charge separation by spin polarization, and improves surface reaction kinetics strengthening surface interaction and increasing product selectivity.

View Article and Find Full Text PDF

Sun-simulated-driven production of high-purity methanol from carbon dioxide.

Nat Commun

January 2025

MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, Analysis and Testing Center, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China.

CO conversion to CHOH under mild conditions is of particular interest yet rather challenging. Both electro- and thermo-catalytic CO reduction to CHOH can only produce CHOH in low concentration (typically mixed with water), requiring energy-intensive purification processes. Here we design a sun-simulated-driven tandem catalytic system comprising CO electroreduction to syngas, and further photothermal conversion into high-purity CHOH (volume fraction > 97%).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!