Similar Publications

Two-dimensional (2D) black arsenic phosphorus (b-AsP) material has been attracting considerable attention for its extraordinary properties. However, its application in large-scale device fabrication remains challenging due to the limited scale and irregular shape. Here, we found the special effect of Te upon growth of b-AsP and developed a novel Te-regulated steady growth (Te-SG) strategy to obtain high-quality b-AsP single crystal.

View Article and Find Full Text PDF

Crafting Hollow Spheres via Bulk Ice Melting with ppb-Level Gas Sensing Performance.

J Am Chem Soc

January 2025

National Center for International Research on Green Optoelectronics, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.

Ice melting, a common yet complex phenomenon, remains incompletely understood. While theoretical studies suggest that preexisting defects in ice generate "off-lattice" water molecules, triggering bulk ice melting, direct experimental evidence of their form has been lacking as the transparent and transient nature of ice poses significant challenges for observation with current techniques. Here, we introduce an ice-melting-induced lyophilization (IMIL) technique that employs graphene-based nanoprobes to replicate and track liquid evolution within melting bulk ice.

View Article and Find Full Text PDF

Neutral mesoionic carbenes (MICs) based on a 1,2,3-triazole core have had a strong impact on various branches of chemistry such as homogeneous catalysis, electrocatalysis, and photochemistry/photophysics. We present here the first general synthesis of anionic mesoionic carbenes (anMICs) based on a 1,2,3-triazole core and a borate backbone. The free anMIC is stable in solution under an inert atmosphere at low temperatures, and can be stored for several weeks.

View Article and Find Full Text PDF

Introduction: The development of efficient and sustainable catalytic methodolo-gies has garnered considerable attention in contemporary organic synthesis.

Methods: Herein, we present a novel approach employing the Cu@DPP-SPION catalyst for the synthesis of ethyl 4-(aryl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate derivatives. This versatile catalytic system incorporates copper nanoparticles supported on 4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)benzoic acid-functionalized superparamagnetic iron oxide nanoparticles (SPIONs).

View Article and Find Full Text PDF

We discuss the challenges associated with achieving high energy efficiency in electrochemical ammonia synthesis at near-ambient conditions. The current Li-mediated process has a theoretical maximum energy efficiency of ∼28%, since Li deposition gives rise to a very large effective overpotential. As a starting point toward finding electrocatalysts with lower effective overpotentials, we show that one reason why Li and alkaline earth metals work as N reduction electrocatalysts at ambient conditions is that the thermal elemental processes, N dissociation and NH desorption, are both facile at room temperature for these metals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!