Structure properties and dielectric relaxation of CaNaTiNbO ceramic.

RSC Adv

Laboratoire des Matériaux Multifonctionnels et Applications, Faculté des Sciences de Sfax (FSS), Université de Sfax B. P.1171 3018 Sfax Tunisia.

Published: August 2019

In this paper, the synthesis of CaNaTiNbO (CNTN) ceramic by a solid-state reaction method is reported. The results of Rietveld refinement of X-ray diffraction (XRD) patterns at room temperature showed a pure tetragonal perovskite (4 space group). Raman spectroscopy analysis, ranging from of 50 to 1000 cm, at room temperature, validates the results of XRD. The dielectric properties was studied by complex impedance spectroscopy examined in broad frequency range, 100 Hz to 200 kHz, at different temperatures. The dielectric permittivity for our CNTN compound confirms the typical relaxor behavior. The investigation of the diffuseness of the transition was conducted by fitting the experimental data with modified Curie-Weiss law; Gaussian distribution and Power law confirm the presence of a short-range association between the polar nanoregions (PNRs). The obtained values of the diffuseness coefficient are of the order 1.6, which corresponds to the diffuse phase transition (DPT) ascribed to the existence of various states of polarization, thus various relaxation times in different regions. The value of diffuseness is of the order 85 and the degree of relaxor (Δ = 65 K) is interesting as far as microelectric applications are concerned. Moreover, based on the frequency dependence of temperature at dielectric maxima using Vogel-Fulcher relationship, a strong evidence for a static freezing temperature with regards to thermally-activated polarization fluctuations was found.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9070096PMC
http://dx.doi.org/10.1039/c9ra03967hDOI Listing

Publication Analysis

Top Keywords

room temperature
8
structure properties
4
dielectric
4
properties dielectric
4
dielectric relaxation
4
relaxation canatinbo
4
canatinbo ceramic
4
ceramic paper
4
paper synthesis
4
synthesis canatinbo
4

Similar Publications

Scaffolding and Heavy-Atom Effects of Metal Chains Enhanced Tunable Long Persistent Luminescence in Metal-Organic Frameworks.

Inorg Chem

December 2024

Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.

Metal-organic frameworks (MOFs) with long persistent luminescence (LPL) have attracted extensive research attention due to their potential applications in information encryption, anticounterfeiting technology, and security logic. The strategic combinations of organic phosphor linkers and metal ions lead to tremendous frameworks, which could unveil many undiscovered properties of organics. Here, the synthesis and characterization of a three-dimensional MOF (Cd-MOF) is reported, which demonstrates enhanced blue photoluminescence and a phosphorescent lifetime of 124 ms as compared to the pristine linker (HL) under ambient conditions due to the scaffolding and heavy-atom effects of metal chains in the framework.

View Article and Find Full Text PDF

Effect of Ethanol Treatment and Calcination Temperature on Water Vapor Adsorption properties of MCM-41.

ACS Appl Mater Interfaces

December 2024

Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No. 2, Nengyuan Rd., Tianhe DistrictGuangzhou 510640, China.

MCM-41, a mesoporous material with a high surface area and tunable pore size, shows great potential for water vapor adsorption. However, due to its large pore size, the effective adsorption capacity at medium to low relative partial pressures is limited in adsorption chiller applications. In this work, MCM-41 was successfully synthesized at room temperature using cetyltrimethylammonium bromide (CTAB) as a templating agent.

View Article and Find Full Text PDF

TiC provides a promising potential for high-temperature microwave absorbers due to its unique combination of thermal stability, high electrical conductivity, and robust structural integrity. C@TiC/SiO composites were successfully fabricated using a simple blending and cold-pressing method. The effects of C@TiC's absorbent content and temperature on the dielectric and microwave absorption properties of C@TiC/SiO composites were investigated.

View Article and Find Full Text PDF

Chemical nanosensors based on nanoparticles of tin dioxide and graphene-decorated tin dioxide were developed and characterized to detect low NO concentrations. Sensitive layers were prepared by the drop casting method. SEM/EDX analyses have been used to investigate the surface morphology and the elemental composition of the sensors.

View Article and Find Full Text PDF

A self-healing superhydrophobic coating was successfully prepared in the present work. The coating comprised PEG (polyethylene glycol) and FeO nanoparticles modified with stearic acid (SA) via hydrogen bonds, using polyamide resin and epoxy as binders. The chemically damaged surface could restore its original superhydrophobic structure and chemical composition after 4 h at room temperature or 10 min of heating in an oven with a self-healing efficiency of 95.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!