AI Article Synopsis

  • Studies show that biomaterials can influence cell differentiation, which is essential for effective tissue engineering, particularly in bone regeneration.
  • Research indicates that human induced pluripotent stem cells (iPSCs) are ideal for bone tissue engineering, and that akermanite's ionic products can promote their osteogenic differentiation.
  • The findings reveal that composite scaffolds made of poly(lactic-glycolic acid) and akermanite significantly enhance both osteogenic and angiogenic differentiation in iPSCs, leading to improved bone repair in experimental models.

Article Abstract

A growing number of studies suggest that the modulation of cell differentiation by biomaterials is critical for tissue engineering. In previous work, we demonstrated that human induced pluripotent stem cells (iPSCs) are remarkably promising seed cells for bone tissue engineering. In addition, we found that the ionic products of akermanite (Aker) are potential inducers of osteogenic differentiation of iPSCs. Furthermore, composite scaffolds containing polymer and bioceramics have more interesting properties compared to pure bioceramic scaffolds for bone tissue engineering. The characteristic of model biomaterials in bone tissue engineering is their ability to control the osteogenic differentiation of stem cells and simultaneously induce the angiogenesis of endothelia cells. Thus, this study aimed at investigating the effects of poly(lactic--glycolic acid)/Aker (PLGA-Aker) composite scaffolds on angiogenic and osteogenic differentiation of human iPSCs in order to optimize the scaffold compositions. The results from Alizarin Red S staining, qRT-PCR analysis of osteogenic genes (BMP2, RUNX2, ALP, COL1 and OCN) and angiogenic genes (VEGF and CD31) demonstrated that PLGA/Aker composite scaffolds containing 10% Aker exhibited the highest stimulatory effects on the osteogenic and angiogenic differentiation of human iPSCs among all scaffolds. After the scaffolds were implanted in nu/nu mice subcutaneous pockets and calvarial defects, H&E staining, BSP immunostaining, qRT-PCR analysis and micro-CT analysis (BMD, BV/TV) indicated that PLGA + 10% Aker scaffolds enhanced the vascularization and osteogenic differentiation of human iPSCs and stimulated the repair of bone defects. Taken together, our work indicated that combining scaffolds containing silicate bioceramic Aker and human iPSCs is a promising approach for the enhancement of bone regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9070079PMC
http://dx.doi.org/10.1039/c9ra02026hDOI Listing

Publication Analysis

Top Keywords

osteogenic differentiation
20
differentiation human
16
tissue engineering
16
human ipscs
16
stem cells
12
bone tissue
12
composite scaffolds
12
scaffolds
9
enhanced vascularization
8
vascularization osteogenic
8

Similar Publications

Guidance on the assessment of the functionality of biomaterials for periodontal tissue regeneration: Methodologies and testing procedures.

Dent Mater

January 2025

Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI 48109, USA. Electronic address:

Innovative biomaterials and tissue engineering strategies show great promise in regenerating periodontal tissues. This guidance provides an overview and detailed recommendations for evaluating the biological functionality of these new biomaterials in vitro, focusing on mineralization, immunomodulatory effects, cellular differentiation, and angiogenesis. Additionally, it discusses the use of in vivo experimental models that mimic periodontitis and scrutinizes methods such as osteogenic differentiation, immunomodulation, and anti-inflammatory responses to assess the effectiveness of these biomaterials in promoting periodontal tissue reconstruction.

View Article and Find Full Text PDF

In clinical scenarios, bone defects stemming from trauma, infections, degenerative diseases, or hereditary conditions necessitate considerable bone grafts. Researchers ardently focus on creating diverse biomaterials to expedite and enhance these intricate restorative processes. These biomaterials play a pivotal role in aiding osteogenesis and angiogenesis factors for reconstructing stable, fully developed bone tissue.

View Article and Find Full Text PDF

An emodin-mediated multifunctional nanoplatform with augmented sonodynamic and immunoregulation for osteomyelitis therapy.

J Colloid Interface Sci

January 2025

Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032 China; Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan 030006 China. Electronic address:

Emodin (ED), as a traditional Chinese medicine, possesses a variety of biological activities and is also one of natural sonosensitizer. Whether emodin could react with titanium dioxide to enhance the sonodynamic activity for safely treating osteomyelitis remains to be explored. Hence, an ED-conjugated Mn-doped titanium dioxide (TOM) nanorod array is designed and prepared on titanium to eliminate bacterial infections under ultrasound (US) treatment.

View Article and Find Full Text PDF

Comprehensive three-dimensional microCT and signaling analysis reveal the teratogenic effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin on craniofacial bone development in mice.

Ecotoxicol Environ Saf

January 2025

Department of Stomatology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, No. 242, Guangji Road, Suzhou, Jiangsu Province 215000, China. Electronic address:

Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in utero can result in osteogenic defect during palatogenesis, but the effects on other craniofacial bones and underlying mechanisms remain to be characterized. By treating pregnant mice with TCDD (40 μg/kg) at the vital craniofacial patterning stages (embryonic day 8.5, 10.

View Article and Find Full Text PDF

Postmenopausal osteoporosis (PMOP) is a chronic systemic bone metabolism disorder. Promotion in the patterns of human bone marrow mesenchymal stem cells (hBMSCs) differentiation towards osteoblasts contributes to alleviating osteoporosis. Aucubin, a natural compound isolated from the well-known herbal medicine Eucommia, was previously shown to possess various pharmacological effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!