Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Elevated levels of potentially toxic elements (PTEs) in aqueous environments have drawn attention recently due to their presence and toxicity to living beings. There have been numerous attempts to remove PTEs from aqueous media. The potential of metal-organic frameworks (MOFs) in removing PTEs from aqueous media has been recognized due to their distinctive advantages (, increased removal capability, large surface area, adjustable porosity, and recyclability). Because of the poor stability of MOFs in water, pre and post synthetic modification and functionalization of MOFs have also been developed for water treatment investigations. This review addresses the performance and mechanisms of PTE removal in various modified MOFs in detail. In order to compare the performance of MOFs, here we used partition coefficient (PC) instead of maximum adsorption capacity, which is sensitively influenced by initial loading concentrations. Therefore, the PC of each material was used to evaluate the adsorption performance of different MOFs and to compare with other sorbents. Furthermore, it discusses the scale-up issues and forthcoming pathway for the research and development needs of MOFs for effective PTE removal. This review further elucidates the main removal mechanisms of PTEs by MOFs. Commercial or domestic water treatment systems or water filters can utilize engineered MOFs to treat water by adsorptive removal. However, marketable products have yet to be investigated thoroughly due to limitations of the large-scale synthesis of MOFs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9073907 | PMC |
http://dx.doi.org/10.1039/c9ra06879a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!