A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deep learning for predicting immunotherapeutic efficacy in advanced non-small cell lung cancer patients: a retrospective study combining progression-free survival risk and overall survival risk. | LitMetric

Background: Radiomics based on computed tomography (CT) images is potential in promoting individualized treatment of non-small cell lung cancer (NSCLC), however, its role in immunotherapy needs further exploration. The aim of this study was to develop a CT-based radiomics score to predict the efficacy of immune checkpoint inhibitor (ICI) monotherapy in patients with advanced NSCLC.

Methods: Two hundred and thirty-six ICI-treated patients were retrospectively included and divided into a training cohort (n=188) and testing cohort (n=48) at a ratio of 8 to 2. The efficacy outcomes of ICI were evaluated based on overall survival (OS) and progression-free survival (PFS). We designed a survival network and combined it with a Cox regression model to obtain patients' OS risk score (OSRS) and PFS risk score (PFSRS).

Results: Based on OSRS and PFSRS, patients were divided into high- and low-risk groups in the training cohort and the test cohort with distinctly different [training cohort, log-rank P<0.001, hazard ratio (HR): 4.14; test cohort, log-rank P=0.014, HR: 4.54] and PFS (training cohort, log-rank P<0.001, HR: 4.52; test cohort, log-rank P<0.001, HR: 6.64). Further joint evaluation of OSRS and PFSRS showed that both were significant in the Cox regression model (P<0.001), and multi-overall survival risk score (MOSRS) displayed more outstanding stratification capabilities than OSRS in both the training (P<0.001) and test cohorts (P=0.002). None of the clinical characteristics were significant in the Cox regression model, and the score that predicted the best immune response was not as good as the risk score from follow-up information in the performance of prognostic stratification.

Conclusions: We developed a CT imaging-based score with the potential to become an independent prognostic factor to screen patients who would benefit from ICI treatment, which suggested that CT radiomics could be applied for individualized immunotherapy of NSCLC. Our findings should be further validated by future larger multicenter study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9073735PMC
http://dx.doi.org/10.21037/tlcr-22-244DOI Listing

Publication Analysis

Top Keywords

non-small cell
8
cell lung
8
lung cancer
8
progression-free survival
8
survival risk
8
training cohort
8
risk score
8
survival
5
cohort
5
deep learning
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!