A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sufficient dimension reduction with simultaneous estimation of effective dimensions for time-to-event data. | LitMetric

When there is not enough scientific knowledge to assume a particular regression model, sufficient dimension reduction is a flexible yet parsimonious nonparametric framework to study how covariates are associated with an outcome. We propose a novel estimator of low-dimensional composite scores, which can summarize the contribution of covariates on a right-censored survival outcome. The proposed estimator determines the degree of dimension reduction adaptively from data; it estimates the structural dimension, the central subspace and a rate-optimal smoothing bandwidth parameter simultaneously from a single criterion. The methodology is formulated in a counting process framework. Further, the estimation is free of the inverse probability weighting employed in existing methods, which often leads to instability in small samples. We derive the large sample properties for the estimated central subspace with data-adaptive structural dimension and bandwidth. The estimation can be easily implemented by a forward selection algorithm, and this implementation is justified by asymptotic convexity of the criterion in working dimensions. Numerical simulations and two real examples are given to illustrate the proposed method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9075741PMC
http://dx.doi.org/10.5705/ss.202017.0550DOI Listing

Publication Analysis

Top Keywords

dimension reduction
12
sufficient dimension
8
structural dimension
8
central subspace
8
reduction simultaneous
4
simultaneous estimation
4
estimation effective
4
effective dimensions
4
dimensions time-to-event
4
time-to-event data
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!