The aim of this review is to provide a comprehensive overview of the direct trifluoromethylation of olefinic C-H bonds with special attention on the mechanistic aspects of the reactions. The review is divided into two major sections. The first focuses exclusively on trifluoromethylation of terminal alkenes, while the second will cover trifluoromethylation of internal alkenes. Literature has been surveyed until the end of April 2019.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9070786PMC
http://dx.doi.org/10.1039/c9ra04170bDOI Listing

Publication Analysis

Top Keywords

direct trifluoromethylation
8
trifluoromethylation olefinic
8
olefinic c-h
8
c-h bonds
8
advances direct
4
trifluoromethylation
4
bonds aim
4
aim review
4
review provide
4
provide comprehensive
4

Similar Publications

Adding colour to ion-selective membranes.

Talanta

January 2025

Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland. Electronic address:

An idea of using ion-exchanger salt containing optically active cations to prepare ion-selective membranes is proposed. Although the presence of an ion-exchanger in the composition of neutral ionophore based sensors is necessary, the choice of available salts for cation-selective sensors preparation, is usually limited to sodium or potassium compounds. In this work we propose application of an alternative salt, using a cation optically active both in absorption and emission mode as a mobile one.

View Article and Find Full Text PDF

The trifluoromethyl (-CF) group represents a highly prevalent functionality in pharmaceuticals. Over the past few decades, significant advances have been made in the development of synthetic methods for trifluoromethylation. In contrast, there are currently no metalloenzymes known to catalyze the formation of C(sp)-CF bonds.

View Article and Find Full Text PDF

A new functional group transformation allowing the synthesis of methyl-dithioesters from readily available trifluoromethyl arenes defluorinative functionalization has been developed. This microwave-assisted method is operationally simple, rapid, and eliminates the need for pre-functionalization while accommodating a broad range of functional groups. In addition, it does not rely on highly odorous thiol sources, and utilizes the commercially available reagent BFSMe complex as a multifunctional Lewis acid/sulfur source/defluorination and demethylation agent.

View Article and Find Full Text PDF

Electrochemical Trifluoromethylation of Enamides under Microflow Conditions.

Org Process Res Dev

November 2024

Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.

The development of sustainable trifluoromethylations of enamides is of great interest to the pharmaceutical industry. Herein, we demonstrate a sustainable direct electrochemical trifluoromethylation method in a microflow cell, using Langlois reagent, without the need for a supporting electrolyte, oxidants, or any additive under mild conditions. This method can be applied to various substrates with a yield of up to 84%.

View Article and Find Full Text PDF

Electrochemiluminescence (ECL) has emerged as a valuable tool for understanding multiphasic and compartmentalized systems, which have crucial wide-ranging applications across diverse fields. However, ECL reactions are limited to the vicinity of the electrode surface due to spatial constraints of electron transfer and the short lifetime of radical species, making ECL emission in bulk multiphasic solution challenging. To address this limitation, we propose a novel bipolar electrochemistry (BPE) approach for wireless dual-color ECL emission at the water/organic (w/o) interface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!