Long-Term High-Temperature Stress Impacts on Embryo and Seed Development in .

Front Plant Sci

Hormonal Crosstalk in Plant Development, Mendel Center for Plant Genomics and Proteomics, CEITEC MU-Central European Institute of Technology, Masaryk University, Brno, Czechia.

Published: April 2022

(rapeseed) is the second most important oilseed crop worldwide. Global rise in average ambient temperature and extreme weather severely impact rapeseed seed yield. However, fewer research explained the phenotype changes caused by moderate-to-high temperatures in rapeseed. To investigate these events, we determined the long-term response of three spring cultivars to different temperature regimes (21/18°C, 28/18°C, and 34/18°C) mimicking natural temperature variations. The analysis focused on the plant appearance, seed yield, quality and viability, and embryo development. Our microscopic observations suggest that embryonic development is accelerated and defective in high temperatures. Reduced viable seed yield at warm ambient temperature is due to a reduced fertilization rate, increased abortion rate, defective embryonic development, and pre-harvest sprouting. Reduced auxin levels in young seeds and low ABA and auxin levels in mature seeds may cause embryo pattern defects and reduced seed dormancy, respectively. Glucosinolates and oil composition measurements suggest reduced seed quality. These identified cues help understand seed thermomorphogenesis and pave the way to developing thermoresilient rapeseed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9075611PMC
http://dx.doi.org/10.3389/fpls.2022.844292DOI Listing

Publication Analysis

Top Keywords

seed yield
12
ambient temperature
8
embryonic development
8
auxin levels
8
reduced seed
8
seed
7
reduced
5
long-term high-temperature
4
high-temperature stress
4
stress impacts
4

Similar Publications

Extraction of cellulose nanocrystals from date seeds using transition metal complex-assisted hydrochloric acid hydrolysis.

Int J Biol Macromol

January 2025

Chemical and Petroleum Engineering Department, College of Engineering, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates. Electronic address:

In this study, the role of a transition metal complex in improving hydrolysis efficiency during nanocellulose production was analysed. Cellulose nanocrystals (CNCs) were extracted from date seeds by incorporating a copper metal complex during HCl hydrolysis. In contrast to traditional HCl hydrolysis at moderate conditions, which yielded only microcrystalline cellulose (MCC), this approach resulted in the extraction of CNCs with a 10 % improved yield compared to MCC.

View Article and Find Full Text PDF

Nanoparticles play a significant role in enhancing crop yield and reducing nutrient loss through precise nutrient delivery mechanisms. However, it is imperative to ascertain the specific plant physiology altered by these nanoparticles. This study investigates the effects of green-synthesized nanoparticles, specifically boron nitride and sulphur, on sunflower yield, seed quality, and physiological activities.

View Article and Find Full Text PDF

Thermoinhibition, the suppression of seed germination by high temperatures, is an adaptive trait that ensures successful seedling establishment in natural environments. While beneficial for wild plants, thermoinhibition can adversely affect crop yields due to uneven and reduced germination rates, particularly in the face of climate change. To understand the genetic basis of thermoinhibition, we conducted a comprehensive genetic analysis of a diverse panel of Lactuca spp.

View Article and Find Full Text PDF

Variation in a single allele drives divergent yield responses to elevated CO between rice subspecies.

Nat Commun

January 2025

State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China.

Rising atmospheric CO generally increases yield of indica rice, one of the two main Asian cultivated rice subspecies, more strongly than japonica rice, the other main subspecies. The molecular mechanisms driving this difference remain unclear, limiting the potential of future rice yield increases through breeding efforts. Here, we show that between-species variation in the DNR1 (DULL NITROGEN RESPONSE1) allele, a regulator of nitrate-use efficiency in rice plants, explains the divergent response to elevated atmospheric CO (eCO) conditions.

View Article and Find Full Text PDF

The current research focused on extraction optimization of bioactive compounds from Strychnos potatorum seeds (SPs) using an eco-friendly glycerol-sodium acetate based deep eutectic solvent (DES). The optimization was accomplished using response surface methodology (RSM) and artificial neural networking (ANN). The independent variables included shaking time (A), temperature (B), and solvent-to-feed ratio (C), and the responses were the extraction yield, total phenolic content (TPC), total flavonoid content (TFC), antioxidant activity (DPPH), and antidiabetic activity (α-amylase inhibitory activity).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!