Charge carrier transport in the active layer and charge extraction at the electrode have significant impact on the performance of solar cells. In this study, the effect of active layer thickness and thermal-annealing treatment on the charge transport and extraction performance of PTB7:PCBM organic solar cells was studied comprehensively. Thin films of active layer couldn't utilize enough sunlight, while thick films could bring about large bulk resistance and deteriorate carrier transport. There is a trade-off between active layer thickness and carrier transport. The optimized active layer thickness is about 100 nm for the PTB7:PCBM bulk heterojunction organic solar cells. Thermal-annealing could improve the morphology of the active layer, and facilitate charge transport in the active layer and charge collection at the electrode. The improved carrier transport and extraction were verified by the transient photocurrent/transient photovoltage and photo-induced charge carrier extraction by linearly increasing voltage measurements. The optimal power conversion efficiency was obtained as 8.28% for the device with an active layer thickness of 100 nm and treated with 90 °C thermal-annealing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9069937 | PMC |
http://dx.doi.org/10.1039/c9ra02877c | DOI Listing |
3 Biotech
January 2025
Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu 641 046 India.
Unlabelled: This study investigated the anticancer phytocompounds in leaf extracts of Kunth. Quantitative analysis of the phytochemical composition showed high levels of primary metabolites: carbohydrates (45.11 ± 2.
View Article and Find Full Text PDFSmall
December 2024
SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
Among 2-dimensional (2D) non-layered transition-metal chalcogenides (TMCs), cobalt sulfides are highly interesting because of their diverse structural phases and unique properties. The unique magnetic properties of TMCs have generated significant interest in their potential applications in future spintronic devices. In addition, their high conductivity, large specific surface area, and abundant active sites have attracted attention in the field of catalysis.
View Article and Find Full Text PDFSmall
December 2024
School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, 510275, P. R. China.
NaNiMnO (NNM) is regarded as a promising cathode material for Na-ion batteries (NIBs), but suffers from irreversible phase transformations characterized by multiple voltage plateaus, resulting in poor cycle stability and inferior rate capability. To address these issues, the NaNiCuZnMnO (NNCZM) cathode material is synthesized by a cation chelation and reassembly process, which can promote a more uniform element distribution than that prepared by the solid-state method (S-NNCZM), resulting in better Na diffusion kinetics and rate capability. Replacing Ni with a small amount of Zn prevents the P2-O2 phase transformation, while replacing Ni with an appropriate amount of electrochemically active Cu eliminates Na-vacancy ordering and additionally contributes to capacity.
View Article and Find Full Text PDFAdv Mater
December 2024
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.
Ammonium-ion supercapacitors (AISCs) offer considerable potential for future development owing to their low cost, high safety, environmental sustainability, and efficient electrochemical energy storage capabilities. The rapid and efficient charge-transfer process at the AISC can endow them with high capacitive and cycling stabilities. However, the prolonged intercalation/deintercalation of NH in layered and framework materials often results in the cleavage of the active sites and the deconstruction of the framework, which makes it difficult to achieve long-term stable energy storage while maintaining high capacitance in the electrode materials.
View Article and Find Full Text PDFNat Prod Res
December 2024
Phytochemistry Department, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G. C, Tehran, Iran.
Plant-based nano-insecticides like provide eco-friendly pest control with low resistance risk. This study aimed to evaluate the insecticidal activity of the FeO @Carbon nanoformulation of extract with a carbon shell and pure extract against (eggs and larvae), a significant potato pest in Iran. A modified solvothermal method produced highly water-dispersible magnetite (FeO) particles, with citrate as a stabilising agent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!