Herein, the effects of the amount of waterborne polyurethane, silica sol and fillers on the compressive and bending strength, temperature resistance and acid resistance of waterborne polyurethane-modified silicate-based coatings were investigated. The results indicated that the modified coating showed higher mechanical properties, impermeability and bonding properties when the amounts of polyurethane and silica sol were 10% and 4%, respectively. The room temperature strength, temperature resistance and acid resistance of the modified coating were 25.1%, 34.1% and 32.4% higher than those of unmodified coatings, respectively. Moreover, the flexibility of the coating was significantly improved. The compression-bend ratio of the modified coating was 7% higher than that of the unmodified coating. The impermeability of the modified coating was 53% higher than that of the unmodified coating. The bond strengths of the modified coatings with a concrete and an acid-resistant ceramic tile were 3.08 MPa and 5.84 MPa, respectively, which were higher than the standard value of 1.2 MPa. SEM analysis showed that the morphological structure of the coating was changed. The results showed that a dense micro-structure with an interpenetrating network was formed. EDS analysis showed that the sulfur atom was absent in the modified coating after acid storage. The MIP test showed that the porosity of the modified sample decreased and the pore distribution was improved. TGA analysis showed that the modified coating could meet the requirement of temperature resistance at 250 °C.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9070550PMC
http://dx.doi.org/10.1039/c9ra04441hDOI Listing

Publication Analysis

Top Keywords

modified coating
24
temperature resistance
12
higher unmodified
12
coating
11
waterborne polyurethane-modified
8
polyurethane-modified silicate-based
8
polyurethane silica
8
silica sol
8
strength temperature
8
resistance acid
8

Similar Publications

Introduction: The RM Pressfit vitamys is an uncemented, titanium particle-coated, isoelastic monoblock cup made of vitamin E blended highly cross-linked polyethylene. We addressed the following questions: (1) What are the clinical and (2) radiographic outcomes 10 years after implantation? (3) What is the revision rate?

Methods: In this prospective observational study in a tertiary care centre we investigated all consecutive cases of total hip replacement with the RM Pressfit vitamys cup between September 2009 and November 2011. It was implanted in 162 hips, 49.

View Article and Find Full Text PDF

Reversible electrochemical extraction using cathode materials shows great potential for selective lithium extraction from low-concentration aqueous sources. However, ion selectivity and structural distortion challenges have limited its application to sources like seawater. Here, we synthesize Nb-modified LiMnO using a simple wet chemistry coating method, introducing minimal structural defects in the LiMnO materials and enhancing stability with a LiNbO coating to limit lattice expansion.

View Article and Find Full Text PDF

Background: Lipid vesicles, especially those utilizing biocompatible materials like chitosan (CHIT), hold significant promise for enhancing the stability and release characteristics of drugs such as indomethacin (IND), effectively overcoming the drawbacks associated with conventional drug formulations.

Objectives: This study seeks to develop and characterize novel lipid vesicles composed of phosphatidylcholine and CHIT that encapsulate indomethacin (IND-ves), as well as to evaluate their in vitro hemocompatibility.

Methods: The systems encapsulating IND were prepared using a molecular droplet self-assembly technique, involving the dissolution of lipids, cholesterol, and indomethacin in ethanol, followed by sonication and the gradual incorporation of a CHIT solution to form stable vesicular structures.

View Article and Find Full Text PDF

Pathogen bacteria appear and survive on various surfaces made of steel or glass. The existence of these bacteria in different forms causes significant problems in healthcare facilities and society. Therefore, the surface engineering of highly potent antimicrobial coatings is highly important in the 21st century, a period that began with a series of epidemics.

View Article and Find Full Text PDF

Composite biopolymer hydrogel as food packaging material, apart from being environmentally favorable, faces high standards set upon food packaging materials. The feature that favors biopolymer film application is their low gas permeability under room conditions and lower relative humidity conditions. However, most biopolymer-based materials show high moisture sensitiveness and limited water vapor permeability, which limits their application for food packaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!