Lactams are a class of compounds important for drug design, due to their great variety of potential therapeutic applications, spanning cancer, diabetes, and infectious diseases. So far, the biological profile and chemical diversity of lactams have not been characterized in a systematic and detailed manner. In this work, we report the chemoinformatic analysis of beta-, gamma-, delta- and epsilon-lactams present in databases of approved drugs, natural products, and bioactive compounds from the large public database ChEMBL. We identified the main biological targets in which the lactams have been evaluated according to their chemical classification. We also identified the most frequent scaffolds and those that can be prioritized in chemical synthesis, since they are scaffolds with potential biological activity but with few reported analogs. Results of the biological and chemoinformatic analysis of lactams indicate that spiro- and bridged-lactams belong to classes with the lowest number of compounds and unique scaffolds, and some showing activity against specific targets. Information obtained from this analysis allows focusing the design of new chemical structures in less explored spaces and with increased possibilities of success.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9070607 | PMC |
http://dx.doi.org/10.1039/c9ra04841c | DOI Listing |
J Cheminform
January 2025
Department of Life Science Informatics and Data Science, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, University of Bonn, Friedrich-Hirzebruch-Allee 5/6, 53115, Bonn, Germany.
Analogue series (AS) are generated during compound optimization in medicinal chemistry and are the major source of structure-activity relationship (SAR) information. Pairs of active AS consisting of compounds with corresponding substituents and comparable potency progression represent SAR transfer events for the same target or across different targets. We report a new computational approach to systematically search for SAR transfer series that combines an AS alignment algorithm with context-depending similarity assessment based on vector embeddings adapted from natural language processing.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Institute for Biomedicine, Eurac Research, Bolzano, Italy.
Metabolomics data analysis includes, next to the preprocessing, several additional repetitive tasks that can however be heavily dataset dependent or experiment setup specific due to the vast heterogeneity in instrumentation, protocols, or also compounds/samples that are being measured. To address this, various toolboxes and software packages in Python or R have been and are being developed providing researchers and analysts with bioinformatic/chemoinformatic tools to create their own workflows tailored toward their specific needs. This chapter presents tools and example workflows for common tasks focusing on the functionality provided by R packages developed as part of the RforMassSpectrometry initiative.
View Article and Find Full Text PDFCurr Cardiol Rev
January 2025
Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint-Petersburg, Russian Federation.
Platelets, tiny cell fragments measuring 2-4 μm in diameter without a nucleus, play a crucial role in blood clotting and maintaining vascular integrity. Abnormalities in platelets, whether genetic or acquired, are linked to bleeding disorders, increased risk of blood clots, and cardiovascular diseases. Advanced proteomic techniques offer profound insights into the roles of platelets in hemostasis and their involvement in processes such as inflammation, metastasis, and thrombosis.
View Article and Find Full Text PDFJ Med Chem
January 2025
Université de Caen Normandie, CERMN UR4258, Normandie Univ, F-14000 Caen, France.
UBE2N protein belongs to the UE2s family and plays a crucial role in DNA repair, making it an exciting target for the development of innovative anticancer therapies. With the aim of discovering UBE2N inhibitors (UBE2Ni), this perspective seeks to review and provide elements to guide the design of new compounds. We propose a chemoinformatic structural analysis of the protein and its areas of interaction with its different partners.
View Article and Find Full Text PDFChemMedChem
January 2025
Crystals First GmbH, -, GERMANY.
Protonation states serve as an essential molecular recognition motif for biological processes. Their correct consideration is key to successful drug design campaigns, since chemoinformatic tools usually deal with default protonation states of ligands and proteins and miss atypical protonation states. The protonation pattern for the Endothiapepsin/PepstatinA (EP/pepA) complex is investigated using different dry lab and wet lab techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!