This paper presents a dual-frequency piezoelectric micromachined ultrasonic transducer (pMUT) array based on thin ceramic PZT for endoscopic photoacoustic imaging (PAI) applications. With a chip size of 7 × 7 mm, the pMUT array consists of 256 elements, half of which have a lower resonant frequency of 1.2 MHz and the other half have a higher resonant frequency of 3.4 MHz. Ceramic PZT, with outstanding piezoelectric coefficients, has been successfully thinned down to a thickness of only 4 by using wafer bonding and chemical mechanical polishing (CMP) techniques and employed as the piezoelectric layer of the pMUT elements. The diaphragm diameters of the lower-frequency and higher-frequency elements are 220 m and 120 m, respectively. The design methodology, multiphysics modeling, fabrication process, and characterization of the pMUTs are presented in detail. The fabricated pMUT array has been fully characterized via electrical, mechanical, and acoustic measurements. The measured maximum responsivities of the lower- and higher- frequency elements reach 110 nm/V and 30 nm/V at their respective resonances. The measured cross-couplings of the lower-frequency elements and higher-frequency elements are about 9% and 5%, respectively. Furthermore, PAI experiments with pencil leads embedded into an agar phantom have been conducted, which clearly shows the advantages of using dual-frequency pMUT arrays to provide comprehensive photoacoustic images with high spatial resolution and large signal-to-noise ratio simultaneously.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9075345PMC
http://dx.doi.org/10.1109/jmems.2021.3096733DOI Listing

Publication Analysis

Top Keywords

ceramic pzt
12
pmut array
12
dual-frequency pmut
8
pmut arrays
8
based thin
8
thin ceramic
8
pzt endoscopic
8
endoscopic photoacoustic
8
photoacoustic imaging
8
resonant frequency
8

Similar Publications

For those piezoelectric materials that operate under high-power conditions, the piezoelectric and dielectric properties obtained under small signal conditions cannot be directly applied to high-power transducers. There are three mainstream high-power characterization methods: the constant voltage method, the constant current method, and the transient method. In this study, we developed and verified a combined impedance method that integrated the advantages of the constant voltage and current methods, along with an improved transient method, for high-power testing of PZT-5H piezoelectric ceramics.

View Article and Find Full Text PDF

Ultrahigh piezoelectric performances of (K,Na)NbO based ceramics enabled by structural flexibility and grain orientation.

Nat Commun

January 2025

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China.

(K,Na)NbO-based ceramics are deemed among the most promising lead-free piezoelectric materials, though their overall piezoelectric performance still lags behind the mainstream lead-containing counterparts. Here, we achieve an ultrahigh piezoelectric charge coefficient d ∼ 807 pC·N, along with a high longitudinal electromechanical coupling factor (k ∼ 88%) and Curie temperature (T ∼ 245 °C) in the (K,Na)(NbSb)O-BiNaZrO-BiFeO (KNN-xSb) system through structural flexibility and grain orientation strategies. Phenomenological models, phase field simulations and high-angle annular dark-field scanning transmission electron microscopy reveal that the structural flexibility originates from the high Coulomb force between K/Na ions and Sb ions in the KNN-xSb system, while the grain orientation promotes the displacement of B-site cations leveraging the engineered domain configuration.

View Article and Find Full Text PDF

Participation of Polymer Materials in the Structure of Piezoelectric Composites.

Polymers (Basel)

December 2024

Doctoral School of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independenței nr. 313, Sector 6, 060042 Bucureşti, Romania.

This review explores the integration of polymer materials into piezoelectric composite structures, focusing on their application in sensor technologies, and wearable electronics. Piezoelectric composites combining ceramic phases like BaTiO, KNN, or PZT with polymers such as PVDF exhibit significant potential due to their enhanced flexibility, processability, and electrical performance. The synergy between the high piezoelectric sensitivity of ceramics and the mechanical flexibility of polymers enables the development of advanced materials for biomedical devices, energy conversion, and smart infrastructure applications.

View Article and Find Full Text PDF

Near-Field Direct Writing Based on Piezoelectric Micromotion for the Programmable Manufacturing of Serpentine Structures.

Micromachines (Basel)

December 2024

Guangdong Provincial Key Laboratory of Intelligent Decision and Cooperative Control, School of Automation, Guangdong University of Technology, Guangzhou 510006, China.

Serpentine microstructures offer excellent physical properties, making them highly promising in applications in stretchable electronics and tissue engineering. However, existing fabrication methods, such as electrospinning and lithography, face significant challenges in producing microscale serpentine structures that are cost-effective, efficient, and controllable. These methods often struggle with achieving precise control over fiber morphology and scalability.

View Article and Find Full Text PDF

The thickness of film materials is a critical factor influencing properties such as energy density, optical performance, and mechanical strength. However, the long-standing challenge of the intrinsic thermodynamic limit on maximum thickness often leads to detrimental cracking, compromising these desirable properties. In this study, we present an approach called the stress-eliminated liquid-phase fabrication (SELF) method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!