A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tidal stream to mainstream: mechanical testing of composite tidal stream blades to de-risk operational design life. | LitMetric

Tidal energy has seen a surge of interest in recent years with several companies developing technology to harness the power of the world's oceans where the operational capacity in Europe was over 11 MW in 2020. One such developer is the partnership of SCHOTTEL Hydro (Germany) and Sustainable Marine (UK) who have developed a scalable multi-turbine device equipped with 70 kW turbines and capable of operating in arrays at sites around the world. The technology to harness tidal energy is still at a relatively early stage of development; hence, de-risking of component parts plays a vital role on the road to commercialisation. Despite this, the number of tidal energy blades undergoing test programmes remains small. Two different rotor diameters have been developed for the aforementioned device such that it can be optimised for sites of varying potential. In this paper, a blade from each of the 4.0 m and 6.3 m diameter devices was tested for their responses in natural frequency, static loading and fatigue loading under test standards IEC 62600-3:2020 and DNVGL-ST-0164. Testing saw the survival of a blade in fatigue at a lifetime-equivalent load and the generation of natural frequency, strain and displacement results for both blades. Data generated from the testing as a whole will contribute to the modelling and validation of future tidal blades.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9033752PMC
http://dx.doi.org/10.1007/s40722-022-00223-4DOI Listing

Publication Analysis

Top Keywords

tidal energy
12
tidal stream
8
technology harness
8
natural frequency
8
tidal
6
stream mainstream
4
mainstream mechanical
4
mechanical testing
4
testing composite
4
composite tidal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!