A new photocatalyst, few-layer MoS grown in MgAl-LDH interlayers (MoS/MgAl-LDH), was prepared by a facile two-step hydrothermal synthesis. The structural and photocatalytic properties of the obtained material were characterized by several techniques including powder X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), photoluminescence spectroscopy (PL) and UV-vis absorption spectroscopy. The MoS/MgAl-LDH composite showed excellent photocatalytic performance for methyl orange (MO) degradation at low concentrations (50 mg L and 100 mg L). Furthermore, even for a MO solution concentration as high as 200 mg L, this composite also presented high degradation efficiency (>84%) and mineralization efficiency (>73%) at 120 min. The results show that the MoS/MgAl-LDH composite has great potential for application in wastewater treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9069589PMC
http://dx.doi.org/10.1039/c9ra03858bDOI Listing

Publication Analysis

Top Keywords

few-layer mos
8
electron microscopy
8
mos/mgal-ldh composite
8
spectroscopy
5
facile synthesis
4
synthesis few-layer
4
mos mgal-ldh
4
mgal-ldh layers
4
layers enhanced
4
enhanced visible-light
4

Similar Publications

High-performance van der Waals stacked transistors based on ultrathin GaPS dielectrics.

Nanoscale

January 2025

School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China.

Article Synopsis
  • Exploring high-κ gate dielectrics is vital for enhancing the performance of field-effect transistors (FETs).
  • The study introduces few-layer gallium thiophosphate (GaPS) as a new semiconductor material with a dielectric constant of about 5.3, which can be easily obtained through mechanical exfoliation.
  • FETs using GaPS as the top-gate dielectric and MoS as the channel material demonstrated impressive performance metrics, indicating that GaPS could be a promising option for advancing two-dimensional electronic devices.
View Article and Find Full Text PDF

MoS, one of the most researched two-dimensional semiconductor materials, has great potential as the channel material in dynamic random-access memory (DRAM) due to the low leakage current inherited from the atomically thin thickness, high band gap, and heavy effective mass. In this work, we fabricate one-transistor-one-capacitor (1T1C) DRAM using chemical vapor deposition (CVD)-grown monolayer (ML) MoS in large area and confirm the ultralow leakage current of approximately 10 A/μm, significantly lower than the previous report (10 A/μm) in two-transistor-zero-capacitor (2T0C) DRAM based on a few-layer MoS flake. Through rigorous analysis of leakage current considering thermionic emission, tunneling at the source/drain, Shockley-Read-Hall recombination, and trap-assisted tunneling (TAT) current, the TAT current is identified as the primary source of leakage current.

View Article and Find Full Text PDF

Stacking Engineering toward Giant Second Harmonic Generation in Twisted Graphene Superstructures.

J Am Chem Soc

January 2025

Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

The nonlinear optical response in graphene is finding increasing applications in nanophotonic devices. The activation and enhancement of second harmonic generation (SHG) in graphene, which is generally forbidden in monolayer and AB-stacked bilayer graphene due to their centrosymmetry, is of urgent need for nanophotonic applications. Here, we present a comprehensive study of SHG performance of twisted multilayer graphene structures based on stacking engineering.

View Article and Find Full Text PDF

With reduced dimensionality and a high surface area-to-volume ratio, two-dimensional (2D) semiconductors exhibit intriguing electronic properties that are exceptionally sensitive to surrounding environments, including directly interfacing gate dielectrics. These influences are tightly correlated to their inherent behavior, making it critical to examine when extrinsic charge carriers are intentionally introduced to the channel for complementary functionality. This study explores the physical origin of the competitive transition between intrinsic and extrinsic charge carrier conduction in extrinsically -doped MoS, highlighting the central role of interactions of the channel with amorphous gate dielectrics.

View Article and Find Full Text PDF

Dual-Gate Modulation in a Quantum Dots/MoS Thin-Film Transistor Gas Sensor.

ACS Sens

January 2025

School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.

Mastering the surface chemistry of quantum dots (QDs) has enabled a remarkable gas-sensing response as well as impressive air stability. To overcome the intrinsic receptor-transducer mismatch of QDs, PbS QDs used as sensitive NO receptors are spin-coated on top of a few-layer MoS and incorporated into a thin-film transistor (TFT) gas sensor. This architecture enables the separation of the electron transduction function from the chemical reception function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!