An inorganic titanium oxide (TiO) gel sensor was demonstrated for convenient detection of ascorbic acid (AA). It is composed of TiO (PI-TiO) functionalized with a perylene diimide derivative containing carboxylic groups as a new soft dopant material. A traditional solvothermal reaction is adopted to prepare the PI-TiO composite, which exhibits a different spectrum according to the reaction time. The final gel possesses a strong chelating affinity with AA molecules, in which phenol hydroxyl groups are shown to compete with those already present in PI. We further utilize the functionalized gel to prepare a series of films with a simple and portable AA response. A visual colour variation can be recognized by the naked eye, together with obvious fluorescence changes for selective and sensitive AA detection. Finally, the as-prepared gel film displays good stability and reproducibility for real sample responses with satisfying results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9069943PMC
http://dx.doi.org/10.1039/c9ra01621jDOI Listing

Publication Analysis

Top Keywords

titanium oxide
8
ascorbic acid
8
gel
5
fluorescent perylene
4
perylene derivative
4
derivative functionalized
4
functionalized titanium
4
oxide gel
4
gel sensitive
4
sensitive portable
4

Similar Publications

High-Performance Hydrogen Sensing at Room Temperature via Nb-Doped Titanium Oxide Thin Films Fabricated by Micro-Arc Oxidation.

Nanomaterials (Basel)

January 2025

Guangdong Key Laboratory of Materials and Equipment in Harsh Marine Environment, School of Ocean Engineering, Guangzhou Maritime University, Guangzhou 510725, China.

Metal oxide semiconductor (MOS) hydrogen sensors offer advantages, such as high sensitivity and fast response, but their challenges remain in achieving low-cost fabrication and stable operation at room temperature. This study investigates Nb-doped TiO (NTO) thin films prepared via a one-step micro-arc oxidation (MAO) with the addition of NbO nanoparticles into the electrolyte for room-temperature hydrogen sensing. The characterization results revealed that the incorporation of NbO altered the film's morphology and phase composition, increasing the Nb content and forming a homogeneous composite thin film.

View Article and Find Full Text PDF

Optical Properties of Thick TiO-P25 Films.

Nanomaterials (Basel)

January 2025

Department of Environmental Engineering, University of Calabria, 87036 Rende, Italy.

In this study, TiO-P25 films on FTO substrates were synthesized using the sol-gel process and studied using Variable Angle Spectroscopy Ellipsometry (VASE) to determine their optical constants and thickness. The measurements were carried out at room temperature in the wavelength range of (300-900) nm at incident angles varying from 55° to 70°. The resulting thicknesses were found to be around 1000 nm.

View Article and Find Full Text PDF

Recent Advances in the Evaluation of the Toxicological and Ecotoxicological Risks of Polymer, Zinc Oxide, Titanium Dioxide and Graphene Oxide Nanoparticles.

Nanomaterials (Basel)

January 2025

Department Biochemistry & Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, 08028 Barcelona, Spain.

Nanotechnology has substantial potential for advancements in the fields of biology and medicine [...

View Article and Find Full Text PDF

Application of Nano-Titanium Dioxide in Food Antibacterial Packaging Materials.

Bioengineering (Basel)

December 2024

Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality & Safety in Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.

Food waste and food safety issues caused by food spoilage have been brought into focus. The inhibition of food spoilage bacteria growth is the key to maintaining food quality and extending the shelf life of food. Photodynamic inactivation (PDI) is an efficient antibacterial strategy which provides a new idea for the antibacterial preservation of food.

View Article and Find Full Text PDF

Mechanically Triggered Protein Desulfurization.

J Am Chem Soc

January 2025

New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.

The technology of native chemical ligation and postligation desulfurization has greatly expanded the scope of modern chemical protein synthesis. Here, we report that ultrasonic energy can trigger robust and clean protein desulfurization, and we developed an ultrasound-induced desulfurization (USID) strategy that is simple to use and generally applicable to peptides and proteins. The USID strategy involves a simple ultrasonic cleaning bath and an easy-to-use and easy-to-remove sonosensitizer, titanium dioxide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!