Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This work describes an attempt to improve the physical and electrochemical parameters of PEM fuel cells that have electrodes modified by titanium and silicon dioxides. A customized design of membrane electrode assemblies was proposed which is characterized to have an around 6 times higher concentration of catalyst at the cathode side (2.0 mgPt cm) in order to investigate the influence of anode catalyst support treatment. Anode catalyst support materials were modified using pristine TiO and TiO-SiO-VTMS - the composite was crosslinked with the aid of vinyltrimethoxysilane. Surface area and porosity analysis was carried out with the aid of BET, BJH, t-plot and Horvath-Kawazoe (H-K) theories for particular components of the support materials and their catalyst mixtures. The experiment revealed a positive influence of TiO-SiO-VTMS (BET 321.9 m g, BJH 3.7 nm) on the anode catalyst layer in terms of surface area (3-times increase, 75 m g) and average pore size (decrease from 25.3 to 15.7 nm). Additionally, favourable microporosity (pores less than 2 nm) was introduced to the material according to the H-K analysis results (10.3 m g, 0.65 nm). Electrochemical experiments, which include polarization curves, electrochemical impedance spectroscopy and cyclic voltammetry, have demonstrated the change of behaviour for the fabricated fuel cells with modified anodes against the reference sample. The mitigation of charge and mass transfer resistance (by 15-20%, 50 mV at 200 mA cm), the improvement of power density (up to 72%, 217 mW cm) and a better exposure of the catalyst to the reactants of an electrochemical reaction were observed for fuel cells modified by both pristine TiO and the hybrid TiO-SiO-VTMS-based compound.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9069572 | PMC |
http://dx.doi.org/10.1039/c9ra04862f | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!