A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Self-Powered Load Sensing Circuitry for Total Knee Replacement. | LitMetric

There has been a significant increase in the number of total knee replacement (TKR) surgeries over the past few years, particularly among active young and elderly people suffering from knee pain. Continuous and optimal monitoring of the load on the knee is highly desirable for designing more reliable knee implants. This paper focuses on designing a smart knee implant consisting of a triboelectric energy harvester and a frontend electronic system to process the harvested signal for monitoring the knee load. The harvester produces an AC signal with peak voltages ranging from 10 V to 150 V at different values of knee cyclic loads. This paper demonstrates the measurement results of a PCB prototype of the frontend electronic system fabricated to verify the functionality and feasibility of the proposed approach for a small range of cycling load. The frontend electronic system consists of a voltage processing unit to attenuate high peak voltages, a rectifier and a regulator to convert the input AC signal into a stabilized DC signal. The DC voltage signal provides biasing for the delta-sigma analog-to-digital converter (ADC). Thus, the output of the triboelectric harvester acts as both the power signal that is rectified/regulated and data signal that is digitized. The power consumption of the proposed PCB design is approximately 5.35 W. Next, the frontend sensor circuitry is improved to accommodate a wider range of cyclic load. These results demonstrate that triboelectric energy harvesting is a promising technique for self-monitoring the load inside knee implants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9075162PMC
http://dx.doi.org/10.1109/jsen.2021.3110241DOI Listing

Publication Analysis

Top Keywords

frontend electronic
12
electronic system
12
knee
9
total knee
8
knee replacement
8
knee implants
8
triboelectric energy
8
peak voltages
8
signal
7
load
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!