Intelligent and robust DNA robots capable of swarming into leakless nonlinear amplification in response to a trigger.

Nanoscale Horiz

Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China.

Published: May 2022

Nonlinear DNA signal amplification with an enzyme-free isothermal self-assembly process is uniquely useful in nanotechnology and nanomedicine. However, progress in this direction is hampered by the lack of effective design models of leak-resistant DNA building blocks. Here, we propose two conceptual models of intelligent and robust DNA robots to perform a leakless nonlinear signal amplification in response to a trigger. Two conceptual models are based on super-hairpin nanostructures, which are designed by innovating novel principles in methodology and codifying them into embedded programs. The dynamical and thermodynamical analyses reveal the critical elements and leak-resistant mechanisms of the designed models, and the leak-resistant behaviors of the intelligent DNA robots and morphologies of swarming into nonlinear amplification are separately verified. The applications of the designed models are also illustrated in specific signal amplification and targeted payload enrichment integration with an aptamer, a fluorescent molecule and surface-enhanced Raman spectroscopy. This work has the potential to serve as design guidelines of intelligent and robust DNA robots and leakless nonlinear DNA amplification, and also as the design blueprint of cargo delivery robots with the performance of swarming into nonlinear amplification in response to a target automatically, facilitating their future applications in biosensing, bioimaging and biomedicine.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2nh00018kDOI Listing

Publication Analysis

Top Keywords

dna robots
16
intelligent robust
12
robust dna
12
leakless nonlinear
12
nonlinear amplification
12
amplification response
12
signal amplification
12
response trigger
8
nonlinear dna
8
models leak-resistant
8

Similar Publications

Objectives: we evaluated the hypothesis that level of ctHPVDNA on the first postoperative day (POD-1); and at 15 days (POD-15) could be associated with the need for adjuvant therapy and the presence of recurrence.

Materials And Methods: this is a prospective observational study on biomarkers, focusing on the longitudinal monitoring of ctHPVDNA in a cohort of HPV-OPSCC patients undergoing TORS. Blood samples were collected according to the following schema: (1) pretreatment; (2) on first postoperative day (POD 1); and (3) at 15 days (POD 15).

View Article and Find Full Text PDF

Colorectal cancer (CRC) is well characterized in terms of genetic mutations and the mechanisms by which they contribute to carcinogenesis. Mutations in APC, TP53, and KRAS are common in CRC, indicating key roles for these genes in tumor development and progression. However, for certain tumors with low frequencies of these mutations that are defined by tumor location and molecular phenotypes, a carcinogenic mechanism dependent on BRAF mutations has been proposed.

View Article and Find Full Text PDF

Molecular dependencies and genomic consequences of a global DNA damage tolerance defect.

Genome Biol

December 2024

Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.

Background: DNA damage tolerance (DDT) enables replication to continue in the presence of fork stalling lesions. In mammalian cells, DDT is regulated by two independent pathways, controlled by the polymerase REV1 and ubiquitinated PCNA, respectively.

Results: To determine the molecular and genomic impact of a global DDT defect, we studied Pcna;Rev1 compound mutants in mouse cells.

View Article and Find Full Text PDF

Supercharging engineering biology with automation.

Eng Biol

December 2024

Analytik Jena AG Analytik Jena UK Ltd London UK.

Breakthroughs in engineering biology will solve the challenges facing humanity, by harnessing life itself. Standing in the way of these breakthroughs are the technical challenges of collecting the requisite data. Data variability and reproducibility problems, mean the odds are stacked against emerging biotechs.

View Article and Find Full Text PDF

The assembly of biological systems forms nonequilibrium patterns with different functionalities through molecular-level communication via stepwise sequential interaction and activation. The mimicking of this molecular signaling offers extensive opportunities to design self-assemblies of bioinspired synthetic nonequilibrium systems to develop molecular robots with active, adaptive, and autonomous behavior. Herein, the design and construction of biomolecular motor system, microtubule (MT)-kinesin based molecular swarm system, are reported through stepwise sequential interactions of DNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!