PLCE1 alleviates lipopolysaccharide-induced acute lung injury by inhibiting PKC and NF-κB signaling pathways.

Allergol Immunopathol (Madr)

Department of Respiratory Medicine, Wenzhou Central Hospital, Wenzhou, Zhejiang Province, China;

Published: May 2022

Background: Acute lung injury (ALI) is a clinical syndrome characterized by hyperosmotic pulmonary edema and increased alveolar fluid. Phospholipase C epsilon-1 (PLCE1), identified as a member of phospholipase family, and the relationship between PLCE1 and lung injury is not clear.

Objective: To assess the possible role of Phospholipase C Epsilon 1 (PLCE1) in Acute lung injury (ALI) progression and related mechanisms.

Materials And Methods: The effects of LPS and PLCE1 on cell viability and apoptosis were examined by MTT and flow cytometry. Also, the level of PLCE1 was controlled by transfection of its plasmid and shRNA. The inflammatory response in response to PLCE1 overexpression or ablation was analyzed by quantitative PCR and ELISA assay. And the involvement of PKC and NF-κB signal pathway were detected by Immunoblot.

Results: In this study, we developed a LPS-induced ALI cell model. We found PLCE1 was upregulated in LPS-induced pneumonia cells and affected cell viability. Also, knockdown of PLCE1 reduced LPS-induced apoptosis of pneumonia cells. In addition, depletion of PLCE1 suppressed LPS-induced secretion of proinflammatory cytokines in pneumonia cells. Mechanically, we found depletion of PLCE1 inhibited PKC and NF-κB signal pathway, and therefore alleviated LPS-induced ALI.

Conclusion: We therefore thought PLCE1 could serve as a promising drug for ALI.

Download full-text PDF

Source
http://dx.doi.org/10.15586/aei.v50i3.590DOI Listing

Publication Analysis

Top Keywords

lung injury
16
plce1
12
acute lung
12
pkc nf-κb
12
pneumonia cells
12
injury ali
8
cell viability
8
nf-κb signal
8
signal pathway
8
depletion plce1
8

Similar Publications

Background: The benefit of mechanical circulatory support (MCS) with Impella (Abiomed, Inc, Danvers, MA) for patients undergoing non-emergent, high-risk percutaneous coronary intervention (HR-PCI) is unclear and currently the subject of a large randomized clinical trial (RCT), PROTECT IV. While contemporary registry data from PROTECT III demonstrated improvement of outcomes with Impella when compared with historical data (PROTECT II), there is lack of direct comparison to the HR-PCI cohort that did not receive Impella support.

Methods: We retrospectively identified patients from our institution meeting PROTECT III inclusion criteria (left ventricular ejection fraction [LVEF] <35% with unprotected left main or last remaining vessel or LVEF <30% undergoing multivessel PCI), and compared this group (NonIMP) to the published outcomes data from the PROTECT III registry (IMP).

View Article and Find Full Text PDF

Objective: We aimed to understand the potential therapeutic and anti-inflammatory effects of the phosphodiesterase-4 (PDE4) inhibitor roflumilast in models of pulmonary infection caused by betacoronaviruses.

Methods: Mice were infected intranasally with murine hepatitis virus (MHV-3) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Roflumilast was given to MHV-3-infected mice therapeutically at doses of 1 mg/kg or 10 mg/kg, or prophylactically at 10 mg/kg.

View Article and Find Full Text PDF

Background: Dexamethasone has proven life-saving in severe acute respiratory syndrome (SARS) and COVID-19 cases. However, its systemic administration is accompanied by serious side effects. Inhalation delivery of dexamethasone (Dex) faces challenges such as low lung deposition, brief residence in the respiratory tract, and the pulmonary mucus barrier, limiting its clinical use.

View Article and Find Full Text PDF

Acute lung injury (ALI) is a severe respiratory disease with high mortality, mainly due to overactivated oxidative stress and subsequent pyroptosis. Mesencephalic astrocyte-derived neurotrophic factor (MANF), an inducible secretory endoplasmic reticulum (ER) stress protein, inhibits lipopolysaccharide (LPS)-induced acute lung injury (ALI). However, the exact molecular mechanism remains unclear.

View Article and Find Full Text PDF

The global burden of COVID-19 continues to rise, and despite significant progress in vaccine development, there remains a critical need for effective treatments for the severe inflammation and acute lung injury associated with SARS-CoV-2 infection. In this study, we explored the antiviral properties of a plant-derived complex consisting of flavonol and hydroxyorganic acid compounds. Our research focused on the ability of the flavonol and hydroxyorganic acid complex to suppress the activity of several key proteins involved in the replication and maturation of SARS-CoV-2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!