Copy number variants (CNVs) play important roles in the pathogenesis of several genetic syndromes. Traditional and molecular karyotyping are considered the first-tier diagnostic tests to detect macroscopic and cryptic deletions/duplications. However, their time-consuming and laborious experimental protocols protract diagnostic times from 3 to 15 days. Nanopore sequencing has the ability to reduce time to results for the detection of CNVs with the same resolution of current state-of-the-art diagnostic tests. Nanopore sequencing was compared to molecular karyotyping for the detection of pathogenic CNVs of seven patients with previously diagnosed causative CNVs of different sizes and cellular fractions. Larger chromosomal anomalies included trisomy 21 and mosaic tetrasomy 12p. Among smaller CNVs, two genomic imbalances of 1.3 Mb, a small deletion of 170 kb, and two mosaic deletions (1.2 Mb and 408 kb) were tested. DNA was sequenced and data generated during runs were analyzed in online mode. All pathogenic CNVs were identified with detection time inversely proportional to size and cellular fraction. Aneuploidies were called after only 30 minutes of sequencing, whereas 30 hours were needed to call small CNVs. These results demonstrate the clinical utility of our approach that allows the molecular diagnosis of genomic disorders within a 30-minute to 30-hour time frame and its easy implementation as a routinary diagnostic tool.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmoldx.2022.03.013 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!