Objective: To evaluate the anti-biofilm activity of chlorhexidine-releasing elastomerics (CRE) developed to prevent biofilm-related diseases in orthodontic patients, using dental microcosm biofilms.
Methods: Elastomerics coated with one of two solutions (CRE 1 and 2) were attached to bovine enamel specimens. Uncoated elastomerics were used for negative (distilled water [DW]) and positive (0.1% chlorhexidine [CHX]) control groups. After saliva inoculation on the surface of the specimen for biofilm formation, DW and CRE groups were treated with DW, and the positive control group was treated with CHX twice a day for 5 min. After 7 days of biofilm formation, colony-forming units (CFUs, total and aciduric bacteria), red/green (R/G) ratio, biofilm thickness, live/dead cell ratio, and bacterial morphology in the biofilms were evaluated. Enamel demineralization was evaluated by fluorescence loss (ΔF).
Results: The CFUs of total and aciduric bacteria and R/G ratios in the CRE groups were significantly lower than those in the DW group with a reduction by 13%, 13%, and 19%, respectively (p < 0.05). The CFUs of total bacteria was significantly lower in the CRE groups than in the 0.1% CHX group (p < 0.05). Among the CRE groups, only CRE 1 exhibited a significantly reduced biofilm thickness of 54% compared to the DW group (p < 0.05) and apparent changes in bacterial morphology. ΔF in the CRE groups was significantly higher by 36% compared to that in the DW group (p < 0.05).
Conclusions: CREs exhibited anti-biofilm and demineralization-inhibiting effect. Particularly, CRE 1 using dichloromethane as the solvent was most effective against biofilms.
Clinical Significance: Chlorhexidine-releasing elastomerics exhibited increased anti-biofilm and demineralization-inhibiting effect compared to 0.1% chlorhexidine mouthwash. Therefore, it is possible to prevent biofilm-related diseases simply and effectively by applying chlorhexidine-releasing elastomerics to orthodontic patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jdent.2022.104153 | DOI Listing |
Colloids Surf B Biointerfaces
January 2025
Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Electronic address:
This study introduces a novel approach to enhance the antibacterial properties of UIO-66 by incorporating both Thymol and ZnO nanoparticles within its framework which represents a significant advancement like exhibiting a synergistic antibacterial effect, providing a prolonged and controlled release, and mitigating cytotoxicity associated with the release of free ZnO nanoparticles by combining these two antimicrobial agents within a single, well-defined metal-organic framework. UIO-66 frameworks are investigated as carriers for the natural antimicrobial agent, Thymol, and ZnONPs offering a novel drug delivery system for antibacterial applications. Results demonstrated 132, 90, 184, and 223 nm sizes for UIO-66, ZnONPs, UIO-66 encapsulated Thymol, and UIO-66 encapsulated both Thymol and ZnONPs, respectively.
View Article and Find Full Text PDFEur J Med Chem
January 2025
Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing, 100050, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; Institute of Pharmaceutics, School of Pharmacy, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China. Electronic address:
De novo design of antimicrobial peptides is a pivotal strategy for developing new antibacterial agents, leveraging its rapid and efficient nature. (XXYY), where X represents cationic residues, Y denotes hydrophobic residues, and n varies from 2 to 4, is a classical α-helix template. Based on which, numerous antimicrobial peptides have been synthesized.
View Article and Find Full Text PDFMolecules
January 2025
Department of Microbiology, Wroclaw Medical University, 50-368 Wroclaw, Poland.
Graphite oxidation to graphene oxide (GO) is carried out using methods developed by Brodie (GO-B) and Hummers (GO-H). However, a comparison of the antibacterial properties based on the physicochemical properties has not been performed. Therefore, this paper outlines a comparative analysis of GO-H and GO-B on antibacterial efficacy against Gram-positive and Gram-negative bacterial cultures and biofilms in an aqueous environment and discusses which of the properties of these GO nanomaterials have the most significant impact on the antibacterial activity of these materials.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Microbiology, Collegium Medicum of L. Rydygier in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 M. Skłodowskiej-Curie Street, 85-094 Bydgoszcz, Poland.
Antibiotic resistance in microorganisms is an escalating global concern, exacerbated by their formation of biofilms, which provide protection through an extracellular matrix and communication via quorum sensing, enhancing their resistance to treatment. This situation has driven the search for alternative approaches, particularly those using natural compounds. This study explores the potential of phytochemicals, such as quercetin, apigenin, arbutin, gallic acid, proanthocyanidins, and rutin, known for their antibacterial properties and ability to inhibit biofilm formation and disrupt mature biofilms.
View Article and Find Full Text PDFMicroorganisms
January 2025
Department of Molecular Biology, Faculty of Biology, University of Plovdiv, Tzar Assen 24, 4000 Plovdiv, Bulgaria.
Lactobacillus is a key genus of probiotics commonly utilized for the treatment of oral infections The primary aim of our research was to investigate the probiotic potential of the newly isolated DPL5 strain from human breast milk, focusing on its ability to combat biofilm-forming pathogens such as . Employing in vitro approaches, we demonstrate DPL5's ability to endure at pH 3 with survival rates above 30%, and withstand the osmotic stress often found during industrial processes like fermentation and freeze drying, retaining over 90% viability. The lyophilized cell-free supernatant of DPL5 had a significant antagonistic effect against biofilm-producing nasal strains of , and it completely eradicated biofilms at subinhibitory concentrations of 20 mg·mL.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!