Background: Chemokines and their receptors regulate inflammatory processes in major depressive disorder (MDD). Here, we characterize the expression pattern of the C-C chemokine receptor 4 (CCR4) and its ligands CCL17 and CCL22 in MDD and its clinical relevance in predicting disease severity.

Methods: Expression of CCR4 on peripheral blood lymphocytes and serum CCL17/CCL22 levels were measured using multiparameter flow cytometry and multiplex assays in 33 depressed inpatients at baseline (T0) and after 6-week multimodal treatment (T1) compared with 21 healthy controls (HC). Using stratified and correlation analysis, we examined the associations of CCR4-CCL17/CCL22 expression with depression severity and symptoms according to standard clinical rating scales and questionnaires. Additionally, we assessed whether polygenic risk score (PRS) for psychiatric disorders and chronotype are associated with disease status or CCR4-CCL17/CCL22 expression. Regression analysis was performed to assess the capacity of CCR4 and PRS in predicting disease severity.

Results: Compared with HC, MDD patients showed significantly decreased CCR4 expression on T cells (T0 and T1), whereas CCL17/CCL22 serum levels were increased. Stratified and correlation analysis revealed an association of CCR4 expression on CD4 T cells with depression severity as well as Beck Depression Inventory-II items including loss of pleasure, agitation and cognitive deficits. CCR4 expression levels on CD4 T cells together with cross-disorder and chronotype PRS significantly predicted disease severity.

Limitations: This exploratory study with small sample size warrants future studies.

Conclusions: This newly identified CCR4-CCL17/CCL22 signature and its predictive capacity for MDD severity suggest its potential functional involvement in the pathophysiology of MDD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jad.2022.05.003DOI Listing

Publication Analysis

Top Keywords

ccr4 expression
12
chemokine receptor
8
expression
8
blood lymphocytes
8
major depressive
8
depressive disorder
8
predicting disease
8
stratified correlation
8
correlation analysis
8
ccr4-ccl17/ccl22 expression
8

Similar Publications

Purpose: To identify the epithelial cell centre regulatory transcription factors in the gastric cancer (GC) microenvironment and provide a new strategy for the diagnosis and treatment of GC.

Methods: The GC single-cell dataset was downloaded from the Gene Expression Omnibus (GEO) database. The regulatory mechanisms of transcription factors in both pan-cancer and GC microenvironments were analysed using the Cancer Genome Atlas (TGCA) database.

View Article and Find Full Text PDF

MARTRE family proteins negatively regulate CCR4-NOT activity to protect poly(A) tail length and promote translation of maternal mRNA.

Nat Commun

January 2025

Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.

Article Synopsis
  • The study focuses on the role of a newly discovered protein family called MARTRE in regulating the poly(A) tail length of maternal mRNA during early embryo development in mice.
  • MARTRE proteins inhibit the deadenylase CCR4-NOT, helping to maintain longer poly(A) tails and enhance mRNA translation efficiency.
  • Deleting the Martre genes leads to shortened poly(A) tails, reduced mRNA translation, and delays in early embryonic development, emphasizing the importance of MARTRE in the translation of maternal mRNA.
View Article and Find Full Text PDF

Although CCL17 has been reported to exert a vital role in many cancers, the related studies in the thyroid carcinoma have never reported. As a chemokine, CCL17 plays a positive role by promoting the infiltration of immune cells into the tumor microenviroment (TME) to influence tumor invasion and metastasis. Therefore, this study is aimed to investigate the association of CCL17 level with potential prognostic value on tumor immunity in the thyroid carcinoma (THCA) based on the bioinformatics analysis.

View Article and Find Full Text PDF

Objective: Multiple sclerosis (MS) may present with predominant involvement of the spinal cord and optic nerve (MS/w-SCON) and mimic other autoimmune inflammatory demyelinating disorders (AIDD) such as neuromyelitis optica spectrum disorder (NMOSD), and relapsing inflammatory optic neuritis (RION). Thus, biomarkers are required for effective differential diagnosis of AIDD.

Methods: Patients with MS/w-SCON (n = 20), MS without involvement of SCON (MS/wo-SCON) (n = 22), NMOSD (n = 16), RION (n = 15) and healthy individuals (n = 21) were included.

View Article and Find Full Text PDF

Cationic Magnetic Nanoparticles Activate Natural Killer Cells for the Treatment of Glioblastoma.

ACS Nano

January 2025

Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.

The blood-brain barrier (BBB) and the immunosuppressive microenvironment of glioblastoma (GBM) severely hinder the infiltration and activity of natural killer (NK) cells, thereby reducing their clinical efficacy in GBM treatment. To address this challenge, we introduced an engineered living material, HEFDS-NK cells, designed to enhance the penetration of NK cells across the BBB and improve their cytotoxicity against GBM. HEFDS comprises magnetic nanoparticles modified using cationic polyethylenimine (PEI), selenocysteine (Sec), and sodium hyaluronate (HA) and cocultured with NK cells to form HEFDS-NK cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!