Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The rapid elimination of systemically administered drug nanocarriers by the mononuclear phagocyte system (MPS) compromises nanomedicine delivery efficacy. To mitigate this problem, an approach to block the MPS has been introduced and implemented by intravenous pre-administering blocker nanoparticles. The required large doses of blocker nanoparticles appeared to burden the MPS, raising toxicity concerns. To alleviate the toxicity issues in MPS blockade, we propose an intrinsically biocompatible blocker, ferrihydrite - a metabolite ubiquitous in a biological organism. Ferrihydrite particles were synthesized to mimic endogenous ferritin-bound iron. Ferrihydrite surface coating with carboxymethyl-dextran was found to improve MPS blockade dramatically with a 9-fold prolongation of magnetic nanoparticle circulation in the bloodstream and a 24-fold increase in the tumor targeted delivery. The administration of high doses of ferrihydrite caused low toxicity with a rapid recovery of toxicological parameters after 3 days. We believe that ferrihydrite particles coated with carboxymethyl-dextran represent superior blocking biomaterial with enviable biocompatibility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2022.121795 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!