Grassland ecosystems provide important ecosystem services such as nutrient cycling and primary production that are affected by land-use intensity. To assess the effects of land-use intensity, operational and sensitive ecological indicators that integrate effects of grassland management on ecosystem processes such as organic matter turnover are needed. Here, we investigated the suitability of measuring the mass loss of standardized tea litter together with extracellular enzyme kinetics as a proxy of litter decomposition in the topsoil of grasslands along a well-defined land-use intensity gradient (fertilization, mowing, grazing) in Central Germany. Tea bags containing either green tea (high-quality litter) or rooibos tea (low-quality litter) were buried in 5 cm soil depth. Litter mass loss was measured after three (early-stage decomposition) and 12 months (mid-stage decomposition). Based on the fluorescence measurement of the reaction product 4-methylumbelliferone, Michaelis-Menten enzyme kinetics (V: potential maximum rate of activity; K: substrate affinity) of five hydrolases involved in the carbon (C)-, nitrogen (N)- and phosphorus (P)-cycle (β-glucosidase (BG), cellobiohydrolase (CBH), cellotriohydrolase (CTH), 1,4-β-N-acetylglucosaminidase (NAG), and phosphatase (PH)) were determined in tea litter bags and in the surrounding soil. The land-use intensity index (LUI), summarizing fertilization, mowing, grazing, and in particular the frequency of mowing were identified as important drivers of early-stage tea litter decomposition. Mid-stage decomposition was influenced by grazing intensity. The higher the potential activity of all measured C-, N- and P-targeting enzymes, the higher was the decomposition of both tea litters in the early-phase. During mid-stage decomposition, individual enzyme parameters (V of CTH and PH, K of CBH) became more important. The tea bag method proved to be a suitable indicator which allows an easy and cost-effective assessment of land-use intensity effects on decay processes in manged grasslands. In combination with enzyme kinetics it is an appealing approach to identify mechanisms driving litter break down.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.155748 | DOI Listing |
J Environ Manage
January 2025
College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
Identifying landscape patterns conducive to pollutant transport control is of vitally importance for water quality protection. However, it remains unclear which landscape patterns can weaken the transport capacity of pollutants entering water bodies. To fill this gap, this study proposes a new framework.
View Article and Find Full Text PDFSci Total Environ
January 2025
Ulm University, Institute of Evolutionary Ecology and Conservation Genomics, Albert-Einstein-Allee 11, 89081 Ulm, Germany. Electronic address:
Agricultural management significantly affects insects, especially pollinators, which are crucial for crop pollination and biodiversity. In agricultural landscapes, various factors spanning different spatial scales are known to affect pollinator health, which, in turn, can influence pollination services. However, the importance of these factors in driving the health and performance of different pollinator groups remains unclear.
View Article and Find Full Text PDFSci Rep
January 2025
College of Jilin Emergency Management, Changchun Institute of Technology, Changchun, 130012, China.
Globally, heavy metal (HM) soil pollution is becoming an increasingly serious concern. Heavy metals in soils pose significant environmental and health risks due to their persistence, toxicity, and potential for bioaccumulation. These metals often originate from anthropogenic activities such as industrial emissions, agricultural practices, and improper waste disposal.
View Article and Find Full Text PDFSci Rep
December 2024
School of Tourism and Town and Country Planning, Xichang University, Xichang, 615013, China.
As global urbanization advances, the expansion of urban land has subjected cities to increasingly frequent and extensive external disturbances, often revealing limitations in disaster prevention and mitigation capacities, particularly in regions characterized by high urbanization, environmental degradation, and recurrent natural disasters. This study investigates the association between urban land expansion and urban resilience, developing a targeted analytical framework to assess their coupling and coordination. Leveraging remote sensing data on land use and socio-economic development indicators, we constructed a comprehensive evaluation index encompassing social, economic, ecological, and infrastructural dimensions.
View Article and Find Full Text PDFSci Rep
December 2024
Institute for Alpine Environment, Eurac Research, Drususallee/Viale Druso 1, Bolzano/Bozen, 39100, Italy.
Orchard meadows, a specific agroforestry system characterised by scattered high-stem fruit trees, are a traditional element of several cultural landscapes in Central Europe and provide important ecosystem services. Since the middle of the 20th century, orchard meadows have drastically declined across Europe. Spatial information on the drivers and patterns of such a decline in several regions in Central Europe is lacking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!