Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Dopamine modulation is thought to underpin some of the therapeutic effects associated with repetitive transcranial magnetic stimulation (rTMS). However, patient studies have failed to demonstrate consistent changes in the dopamine system in vivo after a therapeutic course of rTMS. Here, we evaluated acute and chronic changes in striatal dopamine release elicited by a clinically relevant course of theta burst (TBS) or sham stimulation using [C]raclopride in healthy non-human primates (n = 11). Subjects were scanned immediately after the first session of TBS and the day after a 3 week course of daily TBS delivery. After experiment completion, animals were euthanized, and immunofluorescence staining was carried out using antibodies targeting D receptors (DR). Continuous TBS (cTBS, an inhibitory form of rTMS) over the left primary motor cortex acutely decreased dopamine release bilaterally in the putamen. However, no significant changes in dopamine receptors nor DR immunoreactivity were noted 24 h after the last stimulation, while a decrease in cortical excitability, as measured by an increase in resting motor threshold, could still be quantified. On the opposite, intermittent TBS (iTBS, an excitatory form of rTMS) did not affect dopamine release, acutely or chronically, DR immunoreactivity or cortical excitability. These findings suggest that the long-term therapeutic effects of TBS might be facilitated through the modulation of different neurotransmission systems beyond the dopamine system. However, given the small sample size, these results should be interpreted with caution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.expneurol.2022.114106 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!