In the present study, a simple and low cost methodology based on ultrasonic assisted-dispersive liquid-liquid microextraction (UA-DLLME) followed by smartphone-based colorimetric measurement was introduced for the separation and determination of Triclosan (TCS) from contaminated waters. This method is based on the formation of an azo compound from the alkaline reaction of TCS with a diazonium ion, resulting from the reaction of sodium nitrite and p-sulfanilic acid in an acidic medium. The orange-brown color product was extracted into a low volume of organic phase by UA-DLLME method and RGB values were recorded with free Android app Color Grab. The effective parameters in this procedure, namely solution pH, p-sulfanilic acid and nitrite concentration, reaction time and volume of the extraction solvent were investigated and optimized by response surface methodology (RSM) based on a Box-Behnken design (BBD) model. Under optimum conditions, the calibration graph was linear in the range of 3.0 and 200 μg L of TCS. The limit of detection (LOD) and limit of quantification (LOQ) were 0.8 and 2.7 μg L, respectively. The proposed method was successfullyused for the analyses of triclosan in several water and wastewater samples and satisfactory results were obtained.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2022.121323DOI Listing

Publication Analysis

Top Keywords

smartphone-based colorimetric
8
determination triclosan
8
assisted-dispersive liquid-liquid
8
liquid-liquid microextraction
8
optimized response
8
response surface
8
p-sulfanilic acid
8
colorimetric determination
4
triclosan aqueoussamples
4
aqueoussamples ultrasound
4

Similar Publications

A new rhodamine based turn on florescent probe ()-3',6'-bis(ethylamino)-2-(((6-methoxy-2-oxo-1,2-dihydroquinolin-3-yl)methylene)amino)-2',7'-dimethylspiro[isoindoline-1,9'-xanthen]-3-one (RME) was efficiently synthesized through a simple condensation reaction of 2-amino-3',6'-bis(ethylamino)-2',7'-dimethylspiro[isoindoline-1,9'-xanthen]-3-one and 6-methoxy-2-oxo-1,2-dihydroquinoline-3-carbaldehyde. The receptor RME is highly non-fluorescent and when copper ions (Cu ions) are added in DMF/water (1 : 2, v/v) medium, the receptor RME exhibits a specific "turn-on" colorimetric and fluorometric response. Moreover, RME binding with Cu ions produced a remarkable color variation that was perceptible to the human eye, changing from colorless to pink.

View Article and Find Full Text PDF

Multifunctional Nanozyme with Aptamer-Based Ratiometric Fluorescent and Colorimetric Dual Detection of Prostate-Specific Antigen.

ACS Appl Mater Interfaces

January 2025

Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.

The adsorption of DNA probes onto nanomaterials represents a promising bioassay technique, generally employing fluorescence or catalytic activity to generate signals. A significant challenge is maintaining the catalytic activity of chromogenic catalysts during detection while enhancing accuracy by overcoming the limitations of single-signal transmission. This article presents an innovative multimodal analysis approach that synergistically combines the oxidase-like activity of Fe-N-C nanozyme (Fe-NC) with red fluorescent carbon quantum dots (R-CQDs), further advancing the dual-mode analysis method utilizing R-CQDs@Fe-NC.

View Article and Find Full Text PDF

The optimal color space enables advantageous smartphone-based colorimetric sensing.

Biosens Bioelectron

December 2024

Biophotonic Nanosensors Laboratory, Centro de Física Aplicada y Tecnología Avanzada (CFATA), Universidad Nacional Autónoma de México (UNAM), Querétaro, 76230, Mexico. Electronic address:

Smartphone-based colorimetric (bio)sensing is a promising alternative to conventional detection equipment for on-site testing, but it is often limited by sensitivity to lighting conditions. These issues are usually avoided using housings with fixed light sources, increasing the cost and complexity of the on-site test, where simplicity, portability, and affordability are a priority. In this study, we demonstrate that careful optimization of color space can significantly boost the performance of smartphone-based colorimetric sensing, enabling housing-free, illumination-invariant detection.

View Article and Find Full Text PDF

On-site visual quantification of alkaline phosphatase activity in cells using a smartphone-based approach.

Anal Chim Acta

January 2025

Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China.

Alkaline phosphatase (ALP) is a critical biomarker associated with various physiological and pathological processes, making its detection essential for disease diagnosis and biomedical research. In this study, we developed a novel, simple, and portable visual quantification method for ALP activity in cells using an efficient CuZnS nanomaterial with peroxidase-like properties, integrated into a smartphone-based platform for enhanced usability. The CuZnS nanomaterial catalyzes the breakdown of H₂O₂, generating ·OH radicals that oxidize the colorless substrate TMB into blue oxTMB, which is subsequently reduced back to TMB by ascorbic acid (AA).

View Article and Find Full Text PDF

Rapid on-site colorimetric detection of arsenic(V) by NH-MIL-88(Fe) nanozymes-based ultraviolet-visible spectroscopic and smartphone-assisted sensing platforms.

Anal Chim Acta

January 2025

College of Resources and Environment, Southwest University, Chongqing, 400716, China; Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China. Electronic address:

Background: Because arsenate (As(V)) is a highly toxic pollutant, timely on-site monitoring of its concentration is crucial for mitigating potential environmental and health hazards. Traditional on-site detection methods for As(V) often face limitations of long response time and low sensitivity. Nanozymes are nanomaterials that exhibit enzyme-like catalytic activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!