Microplastics are the particulate plastic debris found almost everywhere as environmental contaminants. They are not chemically stable persistent pollutants, but reactive materials. In fact, synthetic polymers exposed to the environment undergo chemical and physical degradation processes which lead not only to mechanical but also molecular fragmentation, releasing compounds that are potentially harmful for the environment and human health. We carried out accelerated photo-oxidative ageing of four reference microplastics (low- and high-density polyethylene, polypropylene, and polystyrene) directly in artificial seawater. We then made a characterization at the molecular level along with a quantification of the chemical species leached into water. Gas chromatography/mass spectrometry analyses performed after selective extraction and derivatization enabled us to identify more than 60 different compounds. Analysis of the leachates from the three polyolefins revealed that the main degradation products were mono- and dicarboxylic acids, along with linear and branched hydroxy acids. The highest amount of leached degradation species was observed for polystyrene, with benzoic acid and phenol derivatives as the most abundant, along with oligomeric styrene derivatives. The results from reference microplastics were then compared with those obtained by analyzing leachates in artificial seawater from aged plastic debris collected in a natural environment. The differences observed between the reference and the environmental plastic leachates mainly concerned the relative abundances of the chemical species detected, with the environmental samples showing higher amounts of dicarboxylic acids and oxidized species.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2022.118521DOI Listing

Publication Analysis

Top Keywords

plastic debris
8
reference microplastics
8
artificial seawater
8
chemical species
8
dicarboxylic acids
8
seeping plastics
4
plastics harmful
4
harmful molecular
4
molecular fragments
4
fragments leaching
4

Similar Publications

Polystyrene nanoparticles induce DNA damage and apoptosis in HeLa cells.

Heliyon

January 2025

Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100, Caserta, Italy.

Nanoplastics (NPs) are plastic particles, typically less than 100 nm in size, that result from daily life products as well as the degradation of larger plastic debris. Due to their small size and chemical composition, they can interact with biological systems in ways that larger plastic particles cannot. Humans are continuously exposed to NPs and several studies showed the potentially toxic effects of these latter on health.

View Article and Find Full Text PDF

Phanerochaete chrysosporium hyphae bio-crack, endocytose and metabolize plastic films.

J Hazard Mater

January 2025

School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Ecological Civilization Research Institute, Hefei University of Technology, Hefei 230009, China.

Numerous studies have focused on the effect and mechanism of plastic degradation; due to their high persistence, petroleum-based plastics are difficult for microbes to mineralize. Although such plastics have been demonstrated to be mineralized by white rot fungus, the reactions at the molecular level remain unknown. Here, we show the whole mineralization model of polyethylene film, that can be summarized as follows: 1) white rot fungus colonizes on polyethylene film, using additives as dissimilated carbon sources; 2) the fungus secretes extracellular enzymes protein, combining with stearic acid as electron donor, causes oxidation and cracking of polyethylene film; and 3) partial dissociated sub-microplastic debris access to cells, further oxidizes in sequential actions of intracellular enzymes, and ultimately mineralize via β-oxidation.

View Article and Find Full Text PDF

This study aimed to develop a novel reconstruction method for segmental mandibulectomy. In the authors' opinion, reconstruction of the anterior border of the mandibular ramus using a double-arm vascularized fibular flap is important to prevent deformity due to buccal depression and the accumulation of food debris, thereby eliminating masticatory dead space that cannot be filled with prostheses such as implants or dentures. Using conventional reconstruction plates, the reconstructed bone positioned at the anterior border of the mandibular ramus required either fixing with only 1 screw or using 2 plates for stable fixation, making it difficult to position the plates stably.

View Article and Find Full Text PDF

Biofilm development as a factor driving the degradation of plasticised marine microplastics.

J Hazard Mater

December 2024

College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, QLD 4811, Australia.

Biodegradation of microplastics facilitated by natural marine biofouling is a promising approach for ocean bioremediation. However, implementation requires a comprehensive understanding of how interactions between the marine microbiome and dominant microplastic debris types (e.g.

View Article and Find Full Text PDF

This study aimed to develop a novel reconstruction method for segmental mandibulectomy. In the authors' opinion, reconstruction of the anterior border of the mandibular ramus using a double-arm vascularized fibular flap is important to prevent deformity due to buccal depression and the accumulation of food debris, thereby eliminating masticatory dead space that cannot be filled with prostheses such as implants or dentures. Using conventional reconstruction plates, the reconstructed bone positioned at the anterior border of the mandibular ramus required either fixing with only 1 screw or using 2 plates for stable fixation, making it difficult to position the plates stably.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!