Hypercrosslinked pyrrole was synthesized via the Friedel-Crafts reaction and then carbonized to obtain urchin-like nitrogen-doped carbon (UNC). Ultrasmall iron oxide nanoparticles were then supported on UNC, and the composite was used to prepare an electrochemical sensor for detecting uric acid (UA) in human urine. FeO/UNC was characterized and analyzed via scanning electron microscopy, transmission electron microscopy, energy dispersive spectrometry, X-ray diffraction, and X-ray photoelectron spectroscopy. A glassy carbon electrode (GCE) modified with FeO/UNC was used as an electrochemical sensor to effectively identify UA. The electrochemical behavior of the FeO/UNC-based UA sensor was studied using differential pulse stripping voltammetry, and the optimal conditions were determined by changing the amount of FeO/UNC, pH of the buffer solution, deposition potential, and deposition time. Under optimal conditions, the FeO/UNC-based electrochemical sensor detected UA in the range of 2-200 μM, where the limit of detection (LOD) for UA was 0.29 μM. Anti-interference experiments were performed, and the sensor was applied to the actual analysis of human urine samples. Urea, glucose, ascorbic acid, and many cations and anions present at 100-fold concentrations relative to UA did not strongly interfere with the response of the sensor to UA. The FeO/UNC electrochemical sensor has high sensitivity and selectivity for uric acid in human urine samples and can be used for actual clinical testing of UA in urine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2022.112538 | DOI Listing |
Lab Chip
January 2025
Nanobioelectronics Laboratory (NBEL), Department of Biomedical Engineering, Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, 8410501 Beer Sheva, Israel.
Dissolved oxygen is crucial for metabolism, growth, and other complex physiological and pathological processes; however, standard physiological models (such as organ-on-chip systems) often use ambient oxygen levels, which do not reflect the lower levels that are typically found . Additionally, the local generation of reactive oxygen species (ROS; a key factor in physiological systems) is often overlooked in biology-mimicking models. Here, we present a microfluidic system that integrates electrochemical dissolved oxygen sensors with lab-on-a-chip technology to monitor the physiological oxygen concentrations and generate hydrogen peroxide (HO; a specific ROS).
View Article and Find Full Text PDFSci Rep
January 2025
Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
Azithromycin (AM) is one of the prescribed drugs in pandemic medication treatment which has paid great attention. We developed in this study a simply modified carbon paste electrode (CPE) to detect AM using poly-threonine (PT). PT or similar polymers are used as carriers to enhance the delivery and effectiveness of AM.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Neuroelectronics, Munich Institute of Biomedical Engineering, Department of Electrical Engineering, School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748 Garching, Germany.
The successful development of a metal-organic framework (MOF)-derived Co/CoO/C core-shell composite integrated into laser-induced graphitic (LIG) carbon electrodes for electrochemical sensing is reported. The sensors are fabricated via a direct laser scribing technique using a UV laser (355 nm wavelength) to induce the photothermolysis of rationally selected ZIF-67 into the LIG matrix. Electrochemical characterization reveals that the incorporation of the laser-scribed ZIF-67-derived composite on the electrode surface reduces the impedance more than 100 times compared with bare LIG sensors.
View Article and Find Full Text PDFLuminescence
January 2025
College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China.
It is of great significance to develop sensors for trace pesticide residues detection in food. Herein, an electrochemiluminescence (ECL) sensor with high sensitivity for the detection of methyl parathion (MP) was constructed by combining of the acetylcholinesterase (AChE) enzyme-inhibited reaction with tris-2,2'-bipyridyl ruthenium Ru(bpy) -triethylamine (TEA) system for the first time. A new ECL probe of MIL-100 loaded with Ru(bpy) (Ru-MIL-100) was synthesized, and then Ru-MIL-100 and AChE were immobilized on the electrode with Nafion.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Freshman Engineering, PVP Siddhartha Institute of Technology Vijayawada 520007 Andhra Pradesh India.
Assessing heavy metal ion (HMI) contamination to sustain drinking water hygiene is a challenge. Conventional approaches are appealing for the detection of HMIs but electrochemical approaches can resolve the limitations of these approaches, such as tedious sample preparation, high cost, time consuming and the need for trained professionals. Here, an electrochemical approach is developed using a nano-sphered polypyrrole (PPy) functionalized with MoS (PPy/MoS) by square wave anodic stripping voltammetry for the detection of HMIs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!