Active assimilators of soluble microbial products produced by wastewater anammox bacteria and their roles revealed by DNA-SIP coupled to metagenomics.

Environ Int

Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China. Electronic address:

Published: June 2022

Heterotrophic bacteria grow on influent organics or soluble microbial products (SMP) in wastewater anammox processes, playing key roles in facilitating microbial aggregation and reducing excess nitrate. The overgrowth of heterotrophs represents one of the major causes of anammox process failure, while the metabolic functions of coexisting heterotrophs and their roles in anammox process remain vague. This study aimed at revealing metabolic interactions between AnAOB and active SMP assimilators by integrating C DNA-stable isotope probing, metabolomic and metagenomic approaches. Glycine, aspartate, and glutamate with low biosynthetic energy cost were the major SMP components produced by AnAOB (net yield: 44.8, 10.4, 8.1 mg·g NH-N). Glycine was likely synthesized by AnAOB via the reductive glycine pathway which is oxygen-tolerant, supporting heterotrophic growth. Fermentative Chloroflexi bacterium OLB13, denitrifying Gemmatimonadaceae and Burkholderiaceae bacterium JOSHI-001 were active SMP assimilators, which were prevalent in globally distributed wastewater anammox reactors as core taxa. They likely formed a mutualistic relationship with auxotrophic Ca. Kuenenia by providing necessities such as methionine, folate, 4'-phosphopantetheine, and molybdopterin cofactor, and receiving vitamin B for methionine synthesis. For the first time, the identify and metabolic features of SMP assimilators in wastewater anammox communities were revealed. Supplying necessities secreted by heterotrophs could be helpful to the endeavor of AnAOB enrichment. Practically, maintaining active but not overgrown SMP assimilators is critical to efficient and stable operation of wastewater anammox processes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2022.107265DOI Listing

Publication Analysis

Top Keywords

wastewater anammox
20
smp assimilators
16
soluble microbial
8
microbial products
8
anammox processes
8
anammox process
8
active smp
8
anammox
7
smp
6
wastewater
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!