A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Monte Carlo modelling of a compact CZT-based gamma camera with application to Lu imaging. | LitMetric

Background: Semiconductor gamma-camera systems based on cadmium zinc telluride (CZT) detectors present new challenges due to an energy-response that includes effects of low-energy tailing. In particular, such energy tails produce effects that need to be considered when imaging radionuclides with multiple emissions such as [Formula: see text]. Monte Carlo simulation can be used to investigate the behaviour of such systems and optimise their use, provided that the detector model closely reflects the real physical detector. The aim of this work is to develop a CZT model applicable for simulation of CZT-based gamma cameras.

Methods: The equations describing the charge transport and signal induction are considered in three dimensions and are solved numerically, and the CZT model is then realised by coupling the detector-response to the photon-transport handled by the SIMIND Monte Carlo program. The CZT model is tuned to reproduce experimentally measured energy spectra of a hand-held gamma camera system for multiple radionuclides ([Formula: see text], [Formula: see text] and [Formula: see text]) and parallel-hole collimators (MEGP, LEHR) as well as an uncollimated system.

Results: Overall, the model results agree well with measurements across the range of experimental conditions. The applicability of the model is demonstrated by separating energy spectra into components to investigate the interference of high-energy photons on lower energy-windows, where pronounced effects of low-energy tailing for [Formula: see text] are observed.

Conclusions: The developed model provides understanding of the specifics of the camera response and is expected to be helpful for future optimisation of gamma camera applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9081070PMC
http://dx.doi.org/10.1186/s40658-022-00463-1DOI Listing

Publication Analysis

Top Keywords

[formula text]
20
monte carlo
12
gamma camera
12
czt model
12
czt-based gamma
8
effects low-energy
8
low-energy tailing
8
energy spectra
8
text] [formula
8
model
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!