Pseudokinases regulate diverse cellular processes associated with normal cellular functions and disease. They are defined bioinformatically based on the absence of one or more catalytic residues that are required for canonical protein kinase functions. The ability to define pseudokinases based on primary sequence comparison has enabled the systematic mapping and cataloging of pseudokinase orthologs across the tree of life. While these sequences contain critical information regarding pseudokinase evolution and functional specialization, extracting this information and generating testable hypotheses based on integrative mining of sequence and structural data requires specialized computational tools and resources. In this chapter, we review recent advances in the development and application of open-source tools and resources for pseudokinase research. Specifically, we describe the application of an interactive data analytics framework, KinView, for visualizing the patterns of conservation and variation in the catalytic domain motifs of pseudokinases and evolutionarily related canonical kinases using a consistent set of curated alignments organized based on the widely used kinome evolutionary hierarchy. We also demonstrate the application of an integrated Protein Kinase Ontology (ProKinO) and an interactive viewer, ProtVista, for mapping and analyzing primary sequence motifs and annotations in the context of 3D structures and AlphaFold2 models. We provide examples and protocols for generating testable hypotheses on pseudokinase functions both for bench biologists and advanced users.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9733567 | PMC |
http://dx.doi.org/10.1016/bs.mie.2022.03.040 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!