Elastography researchers have utilized several rheological models to characterize soft tissue viscoelasticity over the past thirty years. Due to the frequency-dependent behavior of viscoelastic parameters as well as the different techniques and frequencies employed in various studies of soft tissues, rheological models have value in standardizing disparate techniques via explicit mathematical representations. However, the important question remains: which of the several available models should be considered for widespread adoption within a theoretical framework? We address this by evaluating the performance of three well established rheological models to characterize ex vivo bovine liver tissues: the Kelvin-Voigt (KV) model as a 2-parameter model, and the standard linear solid (SLS) and Kelvin-Voigt fractional derivative (KVFD) models as 3-parameter models. The assessments were based on the analysis of time domain behavior (using stress relaxation tests) and frequency domain behavior (by measuring shear wave speed (SWS) dispersion). SWS was measured over a wide range of frequency from 1 Hz to 1 kHz using three different tests: (i) harmonic shear tests using a rheometer, (ii) reverberant shear wave (RSW) ultrasound elastography scans, and (iii) RSW optical coherence elastography scans, with each test targeting a distinct frequency range. Our results demonstrated that the KVFD model produces the only mutually consistent rendering of time and frequency domain data for liver. Furthermore, it reduces to a 2-parameter model for liver (correspondingly to a 2-parameter "spring-pot" or power-law model for SWS dispersion) and provides the most accurate predictions of the material viscoelastic behavior in time (>98% accuracy) and frequency (>96% accuracy) domains. STATEMENT OF SIGNIFICANCE: Rheological models are applied in quantifying tissues viscoelastic properties. This study is unique in presenting comprehensive assessments of rheological models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9335515 | PMC |
http://dx.doi.org/10.1016/j.actbio.2022.04.047 | DOI Listing |
Sci Rep
December 2024
Rheonova, 1 Allee de Certéze, 38610, Gières, France.
Pulmonary mucus serves as a crucial protective barrier in the respiratory tract, defending against pathogens and contributing to effective clearance mechanisms. In Muco Obstructive Pulmonary Diseases (MOPD), abnormal rheological properties lead to highly viscous mucus, fostering chronic infections and exacerbations. While prior research has linked mucus viscoelasticity to its mucin content, the variability in MOPD patients implies the involvement of other factors.
View Article and Find Full Text PDFSci Rep
December 2024
Laboratorio de Fluidodinámica, Facultad de Ingeniería, Universidad de Buenos Aires/CONICET, Paseo Colón 850 CABA, Buenos Aires, Argentina.
The oil and gas industry faces two significant challenges, including rising global temperatures and depletion of reserves. Enhanced recovery techniques such as polymer flooding have positioned themselves as an alternative that attracts international attention thanks to increased recovery factors with low emissions. However, existing physical models need further refinement to improve predictive accuracy and prevent design failures in polymer flooding projects.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Chemical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran.
Pipe-stuck, filtrate volume, and formation damage during the drilling operation are directly related to the poor performance of drilling fluids. Hence, considerable attention is required to improve the filtration and rheological properties of drilling fluids and achieve industrial and environmental qualification standards. This study experimentally investigates the impact of Pectin and Astragalus gum biopolymers on the filtration and rheological properties of the water-based drilling fluid (WBDF).
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Biochemistry and Nutrition Division, ICAR- Central Institute of Fisheries Technology, Cochin 682029, Kerala, India. Electronic address:
In the present study, biopolymer (chitosan and alginate)-reinforced rhamnolipid nanoparticles were prepared and represented as 'ALG-RHLP-NPs' and 'CHI-RHLP-NPs'. The sizes of the nanoparticles ranged from 150 to 300 nm. The encapsulation efficiencies of ALG-RHLP-NPs and CHI-RHLP-NPs were found to be 81.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Physics, Sakarya University, Sakarya, Turkey.
Environmental problems have increased the need for sustainable agricultural practices that conserve water and energy. Carob, an eco-friendly crop with multiple health benefits, holds the potential for economic evaluation. This study investigates the carob molasses extraction process, focusing on the influence of temperature and water quantity on the diffusion coefficient.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!