Abnormal regulation of pro-inflammatory cytokine and chemokine mediators can contribute to the excess inflammation characteristic of many autoimmune diseases, such as rheumatoid arthritis, psoriasis, Crohn's disease, type 1 diabetes, and many others. The tristetraprolin (TTP) family consists of a small group of related RNA-binding proteins that bind to preferred AU-rich binding sites within the 3'-untranslated regions of specific mRNAs to promote mRNA deadenylation and decay. TTP deficient mice develop a severe systemic inflammatory syndrome consisting of arthritis, myeloid hyperplasia, dermatitis, autoimmunity and cachexia, due at least in part to the excess accumulation of proinflammatory chemokine and cytokine mRNAs and their encoded proteins. To investigate the possibility that increased TTP expression or activity might have a beneficial effect on inflammatory diseases, at least two mouse models have been developed that provide proof of principle that increasing TTP activity can promote the decay of pro-inflammatory and other relevant transcripts, and decrease the severity of mouse models of inflammatory disease. Animal studies of this type are summarized here, and we briefly review the prospects for harnessing these insights for the development of TTP-based anti-inflammatory treatments in humans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9636069 | PMC |
http://dx.doi.org/10.1016/j.pharmthera.2022.108198 | DOI Listing |
Mol Cell
January 2025
Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria; University of Vienna, Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria. Electronic address:
The fidelity of immune responses depends on timely controlled and selective mRNA degradation that is largely driven by RNA-binding proteins (RBPs). It remains unclear whether stochastic or directed processes govern the selection of an individual mRNA molecule for degradation. Using human and mouse cells, we show that tristetraprolin (TTP, also known as ZFP36), an essential anti-inflammatory RBP, destabilizes target mRNAs via a hierarchical molecular assembly.
View Article and Find Full Text PDFCell Res
February 2025
National Key Laboratory of Immunity & Inflammation, Second Military Medical University, Shanghai, China.
Immunometabolism is critical in the regulation of immunity and inflammation; however, the mechanism of preventing aberrant activation-induced immunopathology remains largely unclear. Here, we report that glyoxalase II (GLO2) in the glycolysis branching pathway is specifically downregulated by NF-κB signaling during innate immune activation via tristetraprolin (TTP)-mediated mRNA decay. As a result, its substrate S-D-lactoylglutathione (SLG) accumulates in the cytosol and directly induces D-lactyllysine modification of proteins.
View Article and Find Full Text PDFJ Microbiol Biotechnol
December 2024
Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea.
Shiga toxins (Stxs), produced by serotype 1 and certain pathotypes, cause hemorrhagic colitis, which can progress to hemolytic uremic syndrome (HUS) and central nervous system (CNS) pathology. The underlying mechanisms of toxin-induced inflammation remain unclear. The p38 mitogen-activated protein kinase (MAPK) and its downstream target, MAPKAPK2 (MK2), play key roles in various cellular responses.
View Article and Find Full Text PDFJ Clin Invest
November 2024
Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.
Allergol Int
November 2024
Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!