Mitophagy induced by UMI-77 preserves mitochondrial fitness in renal tubular epithelial cells and alleviates renal fibrosis.

FASEB J

Key Laboratory of Kidney Disease Prevention and Control Technology, Kidney Disease Center, Institute of Nephrology, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.

Published: June 2022

Renal fibrosis is the final common outcome of chronic kidney disease (CKD), which remains a huge challenge due to a lack of targeted treatment. Growing evidence suggests that during the process of CKD, the integrity and function of mitochondria in renal tubular epithelial cells (TECs) are generally impaired and strongly connected with the progression of renal fibrosis. Mitophagy, a selective form of autophagy, could remove aberrant mitochondria to maintain mitochondrial homeostasis. Deficiency of mitophagy has been reported to aggravate renal fibrosis. However, whether induction of mitophagy could alleviate renal fibrosis has not been stated. In this study, we explored the effect of mitophagy activation by UMI-77, a compound recently verified to induce mitophagy, on murine CKD model of unilateral ureteral obstruction (UUO) in vivo and TECs in vitro. In UUO mice, we found the changes of mitochondrial damage, ROS production, transforming growth factor (TGF)-β1/Smad pathway activation, as well as epithelial-mesenchymal transition phenotype and renal fibrosis, and these changes were ameliorated by mitophagy enhancement using UMI-77. Moreover, TEC apoptosis, nuclear factor (NF)-κB signaling activation, and interstitial inflammation after UUO were significantly mitigated by augmented mitophagy. Then, we found UMI-77 could effectively and safely induce mitophagy in TECs in vitro, and reduced TGF-β1/Smad signaling and downstream profibrotic responses in TGF-β1-treated TECs. These changes were restored by a mitophagy inhibitor. In conclusion, we demonstrated that mitophagy activation protected against renal fibrosis through improving mitochondrial fitness, downregulating TGF-β1/Smad signaling and alleviating TEC injuries and inflammatory infiltration in kidneys.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.202200199RRDOI Listing

Publication Analysis

Top Keywords

renal fibrosis
28
mitophagy
11
renal
9
mitochondrial fitness
8
renal tubular
8
tubular epithelial
8
epithelial cells
8
mitophagy activation
8
induce mitophagy
8
tecs vitro
8

Similar Publications

Long-term blood glucose control via glucose-activated transcriptional regulation of insulin analogue in type 1 diabetes mice.

Diabetes Obes Metab

January 2025

National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, People's Republic of China.

Aim: To achieve glucose-activated transcriptional regulation of insulin analogue in skeletal muscle of T1D mice, thereby controlling blood glucose levels and preventing or mitigating diabetes-related complications.

Materials And Methods: We developed the GANIT (Glucose-Activated NFAT-regulated INSA-F Transcription) system, an innovative platform building upon the previously established intramuscular plasmid DNA (pDNA) delivery and expression system. In the GANIT system, skeletal muscle cells are genetically engineered to endogenously produce the insulin analogue INSA-F (Insulin Aspart with Furin cleavage sites).

View Article and Find Full Text PDF

Effect of the glucagon-like peptide-1 receptor agonists dulaglutide on kidney outcomes in db/db mice.

Cell Signal

January 2025

Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei 230601, Anhui Province, China; Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Jingkai District, Hefei 230601, Anhui Province, China. Electronic address:

Diabetic kidney disease (DKD), a microvascular complication of diabetes mellitus, represents a significant clinical challenge. This study investigated the reno-protective effects of dulaglutide, a glucagon-like peptide-1 receptor agonist (GLP-1 RA) widely used in the management of diabetes, and aimed to elucidate its underlying mechanisms. Mice with db/db and db/m genotypes were allocated into four experimental groups and treated with either dulaglutide or a saline control for 10 weeks.

View Article and Find Full Text PDF

Calcineurin inhibitors (CNIs) are indispensable immunosuppressants for transplant recipients and patients with autoimmune diseases, but chronic use causes nephrotoxicity, including kidney fibrosis. Why inhibiting calcineurin, a serine/threonine phosphatase, causes kidney fibrosis remains unknown. We performed single-nucleus RNA sequencing of the kidney from a chronic CNI nephrotoxicity mouse model and found an increased proportion of injured proximal tubule cells, which exhibited altered expression of genes associated with oxidative phosphorylation, cellular senescence and fibrosis.

View Article and Find Full Text PDF

We previously reported that plasmalogens, a class of phospholipids, were decreased in a setting of dilated cardiomyopathy (DCM). Plasmalogen levels can be modulated via a dietary supplement called alkylglycerols (AG) which has demonstrated benefits in some disease settings. However, its therapeutic potential in DCM remained unknown.

View Article and Find Full Text PDF

Enhancement of renal fibrosis in PHF20 transgenic mice.

Toxicol Res

January 2025

Department of Pharmacology, College of Medicine, Chungnam National University, 266 Munhwa St, Jung-gu, Daejeon, 35015 Republic of Korea.

Plant homeodomain finger protein 20 (PHF20) plays a crucial role in various biological processes, but its involvement in renal fibrosis remains unclear. This study investigated the role of PHF20 in renal fibrosis using a unilateral ureteral obstruction (UUO) mouse model, a widely accepted model for chronic kidney disease. PHF20 transgenic (PHF20-TG) and wild-type (WT) mice were utilized to explore how PHF20 influences renal inflammation and fibrosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!