Dermal papilla (DP) cells regulate hair follicle epithelial cells and melanocytes by secreting functional factors, playing a key role in hair follicle morphogenesis and hair growth. DP cells can reconstitute new hair follicles and induce hair regeneration, providing a potential therapeutic strategy for treating hair loss. However, current methods for isolating DP cells are either inefficient (physical microdissection) or only applied to genetically labeled mice. We systematically screened for the surface proteins specifically expressed in skin DP using mRNA expression databases. We identified two antibodies against receptors LEPTIN Receptor (LEPR ) and Scavenger Receptor Class A Member 5 (SCARA5) which could specifically label and isolate DP cells by flow cytometry from mice back skin at the growth phase. The sorted LEPR cells maintained the DP characteristics after culturing in vitro, expressing DP marker alkaline phosphatase and functional factors including RSPO1/2 and EDN3, the three major DP secretory factors that regulate hair follicle epithelial cells and melanocytes. Furthermore, the low-passage LEPR DP cells could reconstitute hair follicles on nude mice using chamber graft assay when combined with epithelial stem cells. The method of isolating functional DP cells we established here lays a solid foundation for developing DP cell-based therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cyto.a.24569DOI Listing

Publication Analysis

Top Keywords

hair follicle
12
cells
11
dermal papilla
8
papilla cells
8
leptin receptor
8
hair
8
regulate hair
8
follicle epithelial
8
epithelial cells
8
cells melanocytes
8

Similar Publications

Objectives: This study investigated the impact of hypoxic preconditioning on the survival and oxidative stress tolerance of nestin-expressing hair follicle stem cells (hHFSCs) and SH-SY5Y neuroblastoma cells, two crucial cell types for central nervous system therapies. The study also examined the relative expression of three key genes, HIF1α, BDNF, and VEGF following hypoxic preconditioning.

Materials And Methods: hHFSCs were isolated from human hair follicles, characterized, and subjected to hypoxia for up to 72 hours.

View Article and Find Full Text PDF

Hair follicle cells reside within a complex extracellular matrix (ECM) environment in vivo, where physical and chemical cues regulate their behavior. The ECM is crucial for hair follicle development and regeneration, particularly through epithelial-mesenchymal interactions. Current in vitro models often fail to replicate this complexity, leading to inconsistencies in evaluating hair loss treatments.

View Article and Find Full Text PDF

Resveratrol-Loaded Versatile Nanovesicle for Alopecia Therapy via Comprehensive Strategies.

Int J Nanomedicine

December 2024

School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong Province, People's Republic of China.

Introduction: Alopecia is a systemic disease with multiple contributing factors. Effective treatment is challenging when only hair growth mechanisms are targeted while ignoring the role of maintaining hair follicle microenvironment homeostasis, which is crucial for cell growth and angiogenesis. Oxidative stress and inflammation are major disruptors of this microenvironment, leading to inhibited cell proliferation and compromised hair follicle circulation.

View Article and Find Full Text PDF

Relationship between fiber quality and follicle density in Ch'aku llamas (Lama glama).

Trop Anim Health Prod

December 2024

Faculty of Veterinary Medicine and Animal Science, Universidad Nacional Micaela Bastidas de Apurímac, Abancay, Perú.

In the high altitudes of the Andes, llama breeders shear the fiber from their animals, obtaining fleeces for many purposes. Dehairing the fleece of these animals is a viable alternative to improving the quality and value of the fleece. The study examined the attributes of fiber quality and pilose follicle of dehaired and non-dehaired fleece from Ch'aku llamas and the relationship among these characteristics.

View Article and Find Full Text PDF

Wool quality is a crucial economic trait in Angora rabbits, closely linked to hair follicle (HF) growth and development. Therefore, understanding the molecular mechanisms of key genes regulating HF growth and wool fiber formation is essential. In the study, fine- and coarse-wool groups were identified based on HF morphological characteristics of Zhexi Angora rabbits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!