Light offers unique opportunities for controlling the activity of materials and biosystems with high spatiotemporal resolution. Molecular photoswitches are chromophores that undergo reversible isomerization between different states upon irradiation with light, allowing a convenient means to control their influence over the system of interest. However, a significant limitation of classical photoswitches is the requirement to initiate the switching in one or both directions using deleterious UV light with poor tissue penetration. Red-shifted photoswitches are hence in high demand and have attracted keen recent research interest. In this Review, we highlight recent progress towards the development of visible- and NIR-activated photoswitches characterized by distinct photochromic reaction mechanisms. We hope to inspire further endeavors in this field, allowing the full potential of these tools in biotechnology and materials chemistry applications to be realized.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202205758 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!